Skip to main content
Log in

Discriminant and Root Separation of Integral Polynomials

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Consider a random polynomial G Q (x) = ξ Q,n x n + ξ Q,n − 1 x n − 1 + ⋯ + ξ Q,0 with independent coefficients that are uniformly distributed on 2Q+1 integer points {−Q, . . .,Q}. Denote by D(GQ) the discriminant of GQ. We show that there exists a constant Cn depending on n only such that for all Q ≥ 2, the distribution of D(GQ) can be approximated as follows: \( \underset{-\infty \le a\le b\le -\infty }{ \sup}\left|\mathrm{P}\left(a\frac{D\left({G}_Q\right)}{Q^{2n-2}}\le b\right)-{\displaystyle \underset{a}{\overset{b}{\int }}{\upvarphi}_n(x)dx}\right|\le \frac{C_n}{ \log Q}, \) where \( \varphi \) n denotes the probability density function of the discriminant of a random polynomial of degree n with independent coefficients that are uniformly distributed on [−1, 1]. Let Δ(GQ) denote the minimal distance between complex roots of GQ. As an application, we show that for any ε > 0 there exists a constant δn > 0 such that Δ(GQ) is stochastically bounded from below/above for all sufficiently large Q in the following sense: \( \mathrm{P}\left({\delta}_n<\varDelta \left({G}_Q\right)<\frac{1}{\delta_n}\right)>1-\varepsilon \). Bibliography: 14 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Beresnevich, V. Bernik, and F. Götze, “The distribution of close conjugate algebraic numbers,” Compos. Math., 146, 1165–1179 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Beresnevich, V. Bernik, and F. Götze, “Integral polynomials with small discriminants and resultants,” Preprint, arXiv:1501.05767 (2015).

  3. V. Beresnevich, V. Bernik, F. Götze, and O. Kukso, “Distribution of algebraic numbers and metric theory of Diophantine approximation,” In: Limit Theorems in Probability, Statistics, and Number Theory, Springer (2013), pp. 23–48.

  4. V. Bernik, F. Götze, and O. Kukso, “Lower bounds for the number of integral polynomials with given order of discriminants, ” Acta Arithm., 133, 375–390 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Bugeaud and A. Dujella, “Root separation for irreducible integer polynomials,” Bull. London Math. Soc., 162, 1239–1244 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Bugeaud and A. Dujella, “Root separation for reducible integer polynomials,” Acta Arithm., 162, 393–403 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Bugeaud and M. Mignotte, “On the distance between roots of integer polynomials,” Proc. Edinb. Math. Soc., 47, 553–556 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Bugeaud and M. Mignotte, “Polynomial root separation,” Int. J. Number Theor., 6, 587–602 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. J.-H. Evertse, “Distances between the conjugates of an algebraic number,” Publ. Math. Debrecen, 65, 323–340 (2004).

    MathSciNet  MATH  Google Scholar 

  10. F. Götze, D. Kaliada, and M. Korolev, “On the number of integral quadratic polynomials with bounded heights and discriminants,” Preprint, arXiv:1308.2091 (2013).

  11. D. Kaliada, F. Götze, and O. Kukso, “The asymptotic number of integral cubic polynomials with bounded heights and discriminants,” Preprint, arXiv:1307.3983 (2013).

  12. K. Mahler, “An inequality for the discriminant of a polynomial,” Mich. Math. J., 11, 257–262 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Mignotte, “Some useful bounds,” in: B. Buchberger et al. (eds), Computer Algebra. Symbolic and Algebraic Computation, Springer (1983), pp. 259–263.

  14. B. L. van der Waerden, “Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt,” Monatsh. Mathematik, 43, 133–147 (1936).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Götze.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 441, 2016, pp. 144–153.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Götze, F., Zaporozhets, D. Discriminant and Root Separation of Integral Polynomials. J Math Sci 219, 700–706 (2016). https://doi.org/10.1007/s10958-016-3139-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-3139-9

Navigation