Journal of Mathematical Sciences

, Volume 219, Issue 5, pp 651–682 | Cite as

Criteria of Divergence Almost Everywhere in Ergodic Theory

  • M. J. G. Weber

In this expository paper, we survey nowadays classical tools or criteria used in problems of convergence everywhere to build counterexamples: the Stein continuity principle, Bourgain’s entropy criteria, and Kakutani–Rokhlin lemma, the most classical device for these questions in ergodic theory. First, we state a L1-version of the continuity principle and give an example of its usefulness by applying it to a famous problem on divergence almost everywhere of Fourier series. Next we particularly focus on entropy criteria in Lp, 2 ≤ p ≤ ∞, and provide detailed proofs. We also study the link between the associated maximal operators and the canonical Gaussian process on L2. We further study the corresponding criterion in Lp, 1 < p < 2, using properties of pstable processes. Finally, we consider Kakutani–Rokhlin’s lemma, one of the most frequently used tools in ergodic theory, by stating and proving a criterion for a.e. divergence of weighted ergodic averages. Bibliography: 38 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bourgain, “Problems of almost everywhere convergence related to harmonic analysis and number theory,” Israel J. Math., 71, 97–127. (1990)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    J. Bourgain, “Almost sure convergence and bounded entropy,” Israel J. Math., 63, 79–95 (1988).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    J. Bourgain, “An approach to pointwise ergodic theorems,” in: Geometric Aspects of Functional Analysis (1986/87), Lecture Notes Math., 1317 (1988), pp. 204–223.CrossRefGoogle Scholar
  4. 4.
    A. Bellow and R. Jones, “A Banach principle for L ,” Adv. Math., 120, 155–172 (1996).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    D. L. Burkholder, “Maximal inequalities as necessary conditions for almost everywhere convergence,” Z. Wahrsch. Verw. Geb., 3, 75–88 (1964).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    I. Berkes and M.Weber, “On series Σc k f(kx) and Khinchin’s conjecture,” Israel J. Math., 201, 593–609 (2014).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Y. Deniel, “On the a.s. Ces`aro-α convergence for stationary of orthogonal sequences,” J. Theor. Probab., 2, 475–485 (1989).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    R. M. Dudley, “Sample functions of the Gaussian process,” Ann. Probab., 1, 66–103 (1973).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    R. M. Dudley, “The size of compact subsets of Hilbert space and continuity of Gaussian processes,” J. Funct. Anal., 1, 290–330 (1967).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A. Garsia, Topics in Almost Everywhere Convergence, Markham Publ. Co., Chicago (1970).MATHGoogle Scholar
  11. 11.
    A. Ya. Helemskiĭ and G. M. Henkin, “Embeddings of compacta into ellipsoids,” Vestnik Moskov. Univ., Ser. I, Matem. Mekh., No. 2, 3–12 (1963).Google Scholar
  12. 12.
    A. N. Kolmogorov, “Asymptotic characteristics of some completely bounded metric spaces,” Dokl. Akad. Nauk SSSR, 108, 585–589 (1956).Google Scholar
  13. 13.
    A. N. Kolmogorov, “Sur les fonctions harmoniques conjuguées et les séries de Fourier,” Fund. Math., 7, 23–28 (1925).Google Scholar
  14. 14.
    A. N. Kolmogorov, “Une série de Fourier–Lebesgue divergente presque partout,” Fund. Math., 4, 324–328 (1923).MATHGoogle Scholar
  15. 15.
    A. N. Kolmogorov, “Une série de Fourier–Lebesgue divergente presque partout,” C. R. Acad. Sci. Paris, Sér. I, Math., 183, 1327–1329 (1926).MATHGoogle Scholar
  16. 16.
    A. N. Kolmogorov and V. M. Tikhomirov, “ε-entropy and ε-capacity of sets in function spaces,” Usp. Mat. Nauk, 14, 1–86 (1959).MathSciNetGoogle Scholar
  17. 17.
    M. T. Lacey, “Carleson’s theorem, proof, complements, variations,” Publ. Math., 48, 251–307 (2004).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    M. T. Lacey, “The return time theorem fails on infinite measure preserving systems,” Ann. Inst. Henri Poincaré, 33, 491–495 (1997).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    J. Lamperti, “On the isometries of certain function-spaces,” Pacific J. Math., 8, 459–466 (1958).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    E. Lesigne, “On the sequence of integer parts of a good sequence for the ergodic theorem,” Comment. Math. Univ. Carolin., 36, 737–743 (1995).MathSciNetMATHGoogle Scholar
  21. 21.
    M. Lifshits and M. Weber, “Oscillations of the Gaussian Stein’s elements,” in: High Dimensional Probability (Oberwolfach, 1996), Progr. Probab., 43, (1998), pp. 249–261.Google Scholar
  22. 22.
    M. Lifshits and M. Weber, “Tightness of stochastic families arising from randomization procedure,” in: Asymptotic methods in probability and statistics with applications (St. Petersburg, 1998), Stat. Ind. Technol., Birkhäuser, Boston (2001), pp. 143–158.Google Scholar
  23. 23.
    G. G. Lorentz, “Metric entropy and approximation,” Bull. Amer. Math. Soc., 72, 903–937 (1966).MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    M. Marcus and G. Pisier, “Characterizations of almost surely p-stable random Fourier series and strongly continuous stationary processes,” Acta Math., 152, 245–301 (1984).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    R. A. Raimi, “Compact transformations and the k-topology in Hilbert space,” Proc. Amer. Math. Soc., 6, 643–646 (1955).MathSciNetMATHGoogle Scholar
  26. 26.
    J. M. Rosenblatt and M. Wierdl, “Pointwise ergodic theorems via harmonic analysis,” in: Proc. Conf. Ergodic Theory and its Connections with Harmonic Analysis, Alexandria, Egypt, Cambridge Univ. Press (1994), pp. 3–151.Google Scholar
  27. 27.
    S. Sawyer, “Maximal inequalities of weak type,” Ann. Math., 84, 157–174 (1996).MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    D. Schneider and M. Weber, “Une remarque sur un théorème de Bourgain,” in: Séminaire de Probabilités, XXVII, Lect. Notes Math., 1557 (1993), pp. 202–206.Google Scholar
  29. 29.
    E. M. Stein, “On limits of sequences of operators,” Ann. Math., 74, 140–170 (1961).CrossRefMATHGoogle Scholar
  30. 30.
    M. Talagrand, Upper and Lower Bounds for Stochastic Processes, Erg. der Math. und ihrer Grenzgeb., 60, Springer, Berlin–Heidelberg (2014).Google Scholar
  31. 31.
    M. Talagrand, “Applying a theorem of Fernique,” Ann. Inst. H. Poincaré, 32, 779–799 (1996).MathSciNetMATHGoogle Scholar
  32. 32.
    M. Weber, Dynamical Systems and Processes, Eur. Math. Soc. Pub. House, IRMA Lect. in Math. and Theor. Physics, 14 (2009).Google Scholar
  33. 33.
    M. Weber, Entropie Métrique et Convergence Presque Partout, Travaux en Cours, 58, Hermann, Paris (1998).Google Scholar
  34. 34.
    M. Weber, “Entropy numbers in Lp-spaces for averages of rotations,” J. Math. Kyoto Univ., 37, 689–700 (1997).MathSciNetMATHGoogle Scholar
  35. 35.
    M. Weber, “The Stein randomization procedure,” Rendiconti Math., Ser. VII, 16, 569–605 (1996).Google Scholar
  36. 36.
    M. Weber, “Coupling of the GB set property for ergodic averages,” J. Theor. Probab., 9, 105–112 (1996).MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    M. Weber, “GB and GC sets in ergodic theory,” in: Probability in Banach Spaces, 9 (Sandjberg, 1993), Progr. Probab., 35, Birkhäuser Boston, Boston MA (1994), pp. 129–151.Google Scholar
  38. 38.
    M. Weber, “Opérateurs réguliers sur les espaces Lp,” in: Séminaire de Probabilités XXVII, Lect. Notes Math., 1557 (1993) pp. 207–215.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.IRMA, Université Louis-Pasteur et C.N.R.S.StrasbourgFrance

Personalised recommendations