Journal of Mathematical Sciences

, Volume 219, Issue 2, pp 300–320 | Cite as

The Nikol’Skii Type Regularity of Solutions to Nonlinear Problems in Domains with Hölder Boundary

  • I. V. Tsylin

We study the regularity of solutions to problems of minimization of integral functionals, the Dirichlet and Neumann problems for elliptic operators of order 2m in domains with Hölder boundary on a compact Riemannian manifold. We establish interactions between the smoothness of the right-hand side, the regularity of the boundary, and the smoothness of solutions to the problems under consideration. Bibliography: 10 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Savaré, “Regularity results for elliptic equations in Lipschitz domains,” J. Funct. Anal. 152, 176–201 (1998).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    I. V. Tsylin, “On the regularity of solutions of variational and boundary-value problems in domains with Hölder boundary” [in Russian], Mat. Zametki 99, No. 5, 794–800 (2016); English trfansl.: Math. Notes 99, No. 5, 785–791 (2016).Google Scholar
  3. 3.
    I. V. Tsylin, “On the smoothness of solutions to elliptic equations in domains with Hölder boundary,” Eurasian Math. J. 6, No. 3, 76–92 (2015).MathSciNetGoogle Scholar
  4. 4.
    M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton (1983).MATHGoogle Scholar
  5. 5.
    O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Embedding Theorems [in Russian], Nauka, Moscow (1996); English transl.: John Wiley & Sons, New York etc. (1978).Google Scholar
  6. 6.
    H. Brezis, Analyse fonctionnelle. Théorie et applications Masson, Paris (1983).MATHGoogle Scholar
  7. 7.
    V. I. Burenkov, “The theorem on repeated norms for Nikol’skii–Besov spaces and its applications” [in Russian], Tr. Mat. Inst. Steklov 181, 27–39 (1988).MathSciNetMATHGoogle Scholar
  8. 8.
    R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Academic Press, New York, NY (2003).MATHGoogle Scholar
  9. 9.
    M. L. Gol’dman, “Imbedding theorems for anisotropic Nikol’skii–Besov spaces with continuity moduli of general form” [in Russian], Tr. Mat. Inst. Steklov 170, 86–104 (1984).MATHGoogle Scholar
  10. 10.
    V. I. Burenkov, “On a method of extending differentiable functions” [in Russian], Tr. Mat. Inst. Steklov 140, 27–67 (1976); English transl.: Proc. Steklov Inst. Math. 140, 27–70 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Lomonosov Moscow State University Peoples Friendship University of RussiaMoscowRussia

Personalised recommendations