Journal of Mathematical Sciences

, Volume 218, Issue 5, pp 581–598 | Cite as

On the Proof of Pontryagin’s Maximum Principle by Means of Needle Variations

  • A. V. Dmitruk
  • N. P. Osmolovskii


We propose a proof of the maximum principle for the general Pontryagin type optimal control problem, based on packets of needle variations. The optimal control problem is first reduced to a family of smooth finite-dimensional problems, the arguments of which are the widths of the needles in each packet, then, for each of these problems, the standard Lagrange multipliers rule is applied, and finally, the obtained family of necessary conditions is “compressed” in one universal optimality condition by using the concept of centered family of compacta.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control [in Russian], Nauka, Moscow (1979).Google Scholar
  2. 2.
    V. G. Boltyansky, Mathematical Methods of Optimal Control [in Russian], Moscow, Nauka (1969).Google Scholar
  3. 3.
    D. A. Carlson, “An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation,” J. Optim. Theory Appl., 54, No. 1, 43–61 (1987).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. V. Dmitruk, “Maximum principle for a general optimal control problem with state and regular mixed constraints,” Comput. Math. Modeling, 4, No. 4, 364–377 (1993).Google Scholar
  5. 5.
    A. V. Dmitruk, “On the development of Pontryagin’s maximum principle in the works of A. Ya. Dubovitskii and A. A. Milyutin,” Control Cybern., 38, No. 4a, 923–958 (2009).MathSciNetMATHGoogle Scholar
  6. 6.
    A. Ya. Dubovitskii and A. A. Milyutin, “Extremum problems in the presence of restrictions,” USSR Comput. Math. Math. Phys., 5, No. 3, 1–80 (1965).Google Scholar
  7. 7.
    A. Ya. Dubovitskii and A. A. Milyutin, “Translations of the Euler equations,” USSR Comput. Math. Math. Phys., 9, No. 6, 1263–1284 (1969).Google Scholar
  8. 8.
    R. V. Gamkrelidze, “Optimal sliding states,” Sov. Math. Dokl., 3, 559–562 (1962).MATHGoogle Scholar
  9. 9.
    I. V. Girsanov, Lectures on the Theory of Extremal Problems [in Russian], Izd. Mosk. Univ., Moscow (1970).Google Scholar
  10. 10.
    A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).Google Scholar
  11. 11.
    A. Korytowski, “A simple proof of the maximum principle with endpoint constraints,” Control Cybern., 43, No. 1, 5–14 (2014).MathSciNetMATHGoogle Scholar
  12. 12.
    L. Lichtenstein, “Eine elementare Bemerkung zur reellen Analysis,” Math. Z., 30, No. 1, 794–795 (1929).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    G. G. Magaril-Il’yaev, “The Pontryagin maximum principle: statement and proof,” Dokl. Math., 85, No. 1, 14–17 (2012).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    K. Makowsky and L. W. Neustadt, “Maximum principle for problems with mixed constraints,” SIAM J. Control Optim., 12, No. 2, 184–228 (1974).CrossRefGoogle Scholar
  15. 15.
    B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, Oxford (1966).MATHGoogle Scholar
  16. 16.
    A. S. Matveev and V. A. Yakubovich, Abstract Theory of Optimal Control [in Russian], Izd. Sankt-Peterburg. Univ., Sankt-Petersburg (1994).Google Scholar
  17. 17.
    P. Michel, “Une demonstration el´ementaire du principe du maximum de Pontryagin,” Bull. Math. Econom., No. 14, 9–23 (1977).Google Scholar
  18. 18.
    A. A. Milyutin, “General schemes of necessary conditions for extrema and optimal control problems,” Russ. Math. Surv, 25, No. 5, 109–115 (1970).CrossRefMATHGoogle Scholar
  19. 19.
    A. A. Milyutin, A. V. Dmitruk, and N. P. Osmolovskii, Maximum Principle in Optimal Control [in Russian], Izd. Mekh.-Mat. Fak. MGU, Moscow (2004).Google Scholar
  20. 20.
    L. S. Pontryagin, V. G. Boltyansky, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes [in Russian], Moscow, Nauka (1961).Google Scholar
  21. 21.
    V. M. Tikhomirov and N. P. Osmolovskii, eds., Optimal control [in Russian], MCCME, Moscow (2008).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Central Economics and Mathematics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.University of Technology and Humanities in RadomRadomPoland
  4. 4.Systems Research Institute, Polish Academy of SciencesWarsawPoland
  5. 5.Moscow State University of Civil EngineeringMoscowRussia

Personalised recommendations