Journal of Mathematical Sciences

, Volume 217, Issue 5, pp 540–556 | Cite as

Isometries of Spaces with Torsion

  • V. I. Panzhensky


In this paper, we study automorphisms (isometries) in Riemann–Cartan spaces (spaces with torsion) of positive definite and alternating Riemannian metrics. We prove that if the connection is semisymmetric, then the maximal dimension of the Lie group of isometries of an n-dimensional space is equal to \( \frac{n\left(n-1\right)}{2}+1 \). If n = 3, then the maximal dimension of the group is equal to 6 and the connection of the maximally movable space is skew symmetric. In this case, the space has a constant curvature k and a constant torsion s, while the Ricci quadratic form is positive (negative) definite if and only if k > s 2 (respectively, k < s 2) and is equal to zero if k = s 2. We construct a maximally movable stationary de Sitter model of the Universe with torsion and propose a geometric interpretation of the torsion of spatial sections.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press (1949).Google Scholar
  2. 2.
    L. P. Eisenhart, Continous Transformation Groups, Princeton Univ. Press, Princeton (1933).Google Scholar
  3. 3.
    I. A. Gordeeva, V. I. Panzhensky, and S. E. Stepanov, “Riemann–Cartan manifolds,” J. Math. Sci., 169, No. 3, 342–361 (2009).CrossRefMATHGoogle Scholar
  4. 4.
    S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag (1972).Google Scholar
  5. 5.
    D. Montgomery and H. Samelson, “Transformation groups of spheres,” Ann. Math., 43 (1943).Google Scholar
  6. 6.
    A. P. Norden, Spaces with Affine Connection [in Russian], Nauka, Moscow (1976).MATHGoogle Scholar
  7. 7.
    V. I. Panzhensky, “Riemannian spaces of constant curvature with torsion,” in: Tr. Inst. Mat. Akad. Nauk Ukr., 6, Kiev (2009), pp. 183–194.Google Scholar
  8. 8.
    V. I. Panzhensky, “Maximally movable Riemannian spaces with torsion,” Mat. Zametki, 85, No. 5, 720–723 (2009).MathSciNetMATHGoogle Scholar
  9. 9.
    V. I. Panzhensky, “Automorphisms of space-time Riemann–Cartan manifolds,” in: Proc. Int. Geom. Center, 5, No. 2, Odessa (2012), pp. 27–34.Google Scholar
  10. 10.
    V. I. Panzhensky, “Stationary model of the Universe with torsion,” Teor. Mat. Fiz., 177, No. 1, 1412–1422 (2013).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    V. I. Panzhensky, “Automorphisms of Riemann–Cartan manifolds with semisymmetric connections,” J. Math. Phys. Anal. Geom., 10, No. 2, 1–7 (2014).MathSciNetMATHGoogle Scholar
  12. 12.
    S. E. Stepanov and I. A. Gordeeva, “Pseudo-Killing and pseudoharmonic vector fields on Riemann–Cartan manifolds,” Mat. Zametki, 87, 248–257 (2010).MathSciNetMATHGoogle Scholar
  13. 13.
    S. Sternberg, Lectures on Differential Geometry, Prentice Hall, Englewood Cliffs, New Jersey (1964).MATHGoogle Scholar
  14. 14.
    I. E. Tamm, “On curved impulse spaces,” in: Collected Works [in Russian], Vol. II, Nauka, Moscow (1975), pp. 218–225.Google Scholar
  15. 15.
    I. E. Tamm and V. G. Vologodskii, “On the application of curved impulse spaces in the construction of the nonlocal Euclidean field theory,” Collected Works [in Russian], Vol. II, Nauka, Moscow (1975), pp. 226–253.Google Scholar
  16. 16.
    Yu. S. Vladimirov, Dimension of Physical Space-Time and Unification of Interactions [in Russian], Moscow State Univ., Moscow (1987).Google Scholar
  17. 17.
    H. C. Wang, “Finsler spaces with completely integrable equations of Killing,” J. London Math. Soc., 22, 5–9 (1947).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    K. Yano and S. Bochner, Curvature and Betti Numbers, Ann. Math. Stud., 32, Princeton Univ. Press, Princeton (1953).Google Scholar
  19. 19.
    19. Ya. B. Zeldovich and I. D. Novikov, Structure and Evolution of the Universe [in Russian], Nauka, Moscow (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Penza State UniversityPenzaRussia

Personalised recommendations