Skip to main content
Log in

Isometries of Spaces with Torsion

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study automorphisms (isometries) in Riemann–Cartan spaces (spaces with torsion) of positive definite and alternating Riemannian metrics. We prove that if the connection is semisymmetric, then the maximal dimension of the Lie group of isometries of an n-dimensional space is equal to \( \frac{n\left(n-1\right)}{2}+1 \). If n = 3, then the maximal dimension of the group is equal to 6 and the connection of the maximally movable space is skew symmetric. In this case, the space has a constant curvature k and a constant torsion s, while the Ricci quadratic form is positive (negative) definite if and only if k > s 2 (respectively, k < s 2) and is equal to zero if k = s 2. We construct a maximally movable stationary de Sitter model of the Universe with torsion and propose a geometric interpretation of the torsion of spatial sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press (1949).

  2. L. P. Eisenhart, Continous Transformation Groups, Princeton Univ. Press, Princeton (1933).

    Google Scholar 

  3. I. A. Gordeeva, V. I. Panzhensky, and S. E. Stepanov, “Riemann–Cartan manifolds,” J. Math. Sci., 169, No. 3, 342–361 (2009).

    Article  MATH  Google Scholar 

  4. S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag (1972).

  5. D. Montgomery and H. Samelson, “Transformation groups of spheres,” Ann. Math., 43 (1943).

  6. A. P. Norden, Spaces with Affine Connection [in Russian], Nauka, Moscow (1976).

    MATH  Google Scholar 

  7. V. I. Panzhensky, “Riemannian spaces of constant curvature with torsion,” in: Tr. Inst. Mat. Akad. Nauk Ukr., 6, Kiev (2009), pp. 183–194.

  8. V. I. Panzhensky, “Maximally movable Riemannian spaces with torsion,” Mat. Zametki, 85, No. 5, 720–723 (2009).

    MathSciNet  MATH  Google Scholar 

  9. V. I. Panzhensky, “Automorphisms of space-time Riemann–Cartan manifolds,” in: Proc. Int. Geom. Center, 5, No. 2, Odessa (2012), pp. 27–34.

  10. V. I. Panzhensky, “Stationary model of the Universe with torsion,” Teor. Mat. Fiz., 177, No. 1, 1412–1422 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. I. Panzhensky, “Automorphisms of Riemann–Cartan manifolds with semisymmetric connections,” J. Math. Phys. Anal. Geom., 10, No. 2, 1–7 (2014).

    MathSciNet  MATH  Google Scholar 

  12. S. E. Stepanov and I. A. Gordeeva, “Pseudo-Killing and pseudoharmonic vector fields on Riemann–Cartan manifolds,” Mat. Zametki, 87, 248–257 (2010).

    MathSciNet  MATH  Google Scholar 

  13. S. Sternberg, Lectures on Differential Geometry, Prentice Hall, Englewood Cliffs, New Jersey (1964).

    MATH  Google Scholar 

  14. I. E. Tamm, “On curved impulse spaces,” in: Collected Works [in Russian], Vol. II, Nauka, Moscow (1975), pp. 218–225.

  15. I. E. Tamm and V. G. Vologodskii, “On the application of curved impulse spaces in the construction of the nonlocal Euclidean field theory,” Collected Works [in Russian], Vol. II, Nauka, Moscow (1975), pp. 226–253.

  16. Yu. S. Vladimirov, Dimension of Physical Space-Time and Unification of Interactions [in Russian], Moscow State Univ., Moscow (1987).

    Google Scholar 

  17. H. C. Wang, “Finsler spaces with completely integrable equations of Killing,” J. London Math. Soc., 22, 5–9 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Yano and S. Bochner, Curvature and Betti Numbers, Ann. Math. Stud., 32, Princeton Univ. Press, Princeton (1953).

  19. 19. Ya. B. Zeldovich and I. D. Novikov, Structure and Evolution of the Universe [in Russian], Nauka, Moscow (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Panzhensky.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 96, Geometry and Analysis, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panzhensky, V.I. Isometries of Spaces with Torsion. J Math Sci 217, 540–556 (2016). https://doi.org/10.1007/s10958-016-2990-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2990-z

Navigation