Journal of Mathematical Sciences

, Volume 217, Issue 4, pp 515–524 | Cite as

Perturbation Theorems for a Multifrequency System with Pulses

  • P. Feketa
  • Yu. Perestyuk

We consider a problem of preservation of a piecewise continuous invariant toroidal set for a class of multifrequency systems with pulses at nonfixed times under perturbations of the right-hand side. New theorems that impose constraints on perturbation terms not in the entire phase space but only in a nonwandering set of the dynamical system guarantee the existence of exponentially stable invariant toroidal set.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Springer Sci. & Business Media (2001).Google Scholar
  2. 2.
    S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, “Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods,” Nonlinear Analysis: Hybrid Systems, 6, No. 3, 899–915 (2012).MathSciNetMATHGoogle Scholar
  3. 3.
    R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: Modeling, Stability, and Robustness, Princeton Univ. Press (2012).Google Scholar
  4. 4.
    W. M. Haddad, V. Chellaboina, and S. G. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control, Princeton Univ. Press (2014).Google Scholar
  5. 5.
    Y. A. Mitropolsky, A. M. Samoilenko, and V. L. Kulik, Dichotomies and Stability in Nonautonomous Linear Systems, CRC Press (2002).Google Scholar
  6. 6.
    M. Perestyuk and P. Feketa, “Invariant manifolds of one class of systems of impulsive differential equations,” Nonlin. Oscillat., 13, No. 2, 260–273 (2010).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    M. Perestyuk and P. Feketa, “Invariant sets of impulsive differential equations with particularities in w-limit set,” Abstr. Appl. Anal., 2011 (2011).Google Scholar
  8. 8.
    M. Perestyuk and P. Feketa, “On preservation of the invariant torus for multifrequency systems,” Ukr. Math. J., 65, No. 11, 1661–1669 (2014).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    M. Perestyuk and P. Feketa, On Preservation of an Exponentially Stable Invariant Torus, Tatra Mountain Math. Publ. (2015) (to appear).Google Scholar
  10. 10.
    N. Perestyuk, “Invariant sets of a class of discontinuous dynamical systems,” Ukr. Math. J., 36, No. 1, 58–62 (1984).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. M. Samoilenko, Elements of the Mathematical Theory of Multi-Frequency Oscillations, Springer (1991).Google Scholar
  12. 12.
    A. M. Samoilenko and N. Perestyuk, Impulsive Differential Equations, World Scientific (1995).Google Scholar
  13. 13.
    V. Tkachenko, “The Green function and conditions for the existence of invariant sets of impulse systems,” Ukr. Math. J., 41, No. 10, 1187–1190 (1989).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    V. Tkachenko, “On multifrequency systems with pulses,” Nonlin. Oscillat., 1, No. 1, 107–116 (1998).MathSciNetGoogle Scholar
  15. 15.
    V. Tkachenko, “On invariant sets of differential equations with pulses,” Nonlin. Oscillat., 2, No. 4, 540–558 (1999).MathSciNetMATHGoogle Scholar
  16. 16.
    A. J. Van Der Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems, Springer, London (2000).CrossRefMATHGoogle Scholar
  17. 17.
    S. Yanchuk and N. Ali, “Conditions for exponential stability and dichotomy of pulse linear extensions of dynamical systems on a torus,” Ukr. Math. J., 50, No. 3, 514–516 (1998).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of Applied Sciences, ErfurtErfurtGermany
  2. 2.Shevchenko Kyiv National UniversityKyivUkraine

Personalised recommendations