Journal of Mathematical Sciences

, Volume 217, Issue 2, pp 229–238 | Cite as

Natural Vibrations of Parabolic Shells

  • M. V. Chernobryvko
  • K. V. Avramov

The Rayleigh–Ritz method is used to analyze the natural vibrations of parabolic shells. The expressions for the kinetic and potential energies of a parabolic shell with fixed thickness are obtained. The properties of eigenfrequencies and eigenmodes of natural vibrations of the shells of different heights are investigated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. V. Valishvili, Methods for the Numerical Analyses of Shells of Revolution on Computers [in Russian], Mashinostroenie, Moscow (1976).Google Scholar
  2. 2.
    È. I. Grigolyuk and V. V. Kabanov, Stability of Shells [in Russian], Nauka, Moscow (1978).Google Scholar
  3. 3.
    V. D. Kubenko and P. S. Koval’chuk, “Nonlinear problems of the vibration of thin shells (review),” Prikl. Mekh., 34, No. 8, 3–31 (1998); English translation : Int. Appl. Mech., 34, No. 8, 703–728 (1998).Google Scholar
  4. 4.
    I. A. Birger and Ya. G. Panovko (editors), Strength. Stability. Vibrations [in Russian], Mashinostroenie, Moscow (1968), Vol. 1.Google Scholar
  5. 5.
    M. V. Chernobryvko, K. V. Avramov, T. Batutina, and A. M. Tonkonogenko, “Free vibrations of rockets deflectors,” in: Proc. of the Fourth Internat. Conf. on Nonlinear Dynamics, ND–KhPI–2013, June 19-22, 2013, Sevastopol (2013), pp. 231–234.Google Scholar
  6. 6.
    V. I. Gulyayev, I. L. Solovjev, and M. A. Belova, “Interconnection of critical states of parabolic shells in simple and compound rotations with values of their natural precession vibration frequencies,” Int. J. Solids Struct., 41, No. 13, 3565–3583 (2004).CrossRefMATHGoogle Scholar
  7. 7.
    Ph. Karamian-Surville, “Numerical experiments on propagation of singularities across an edge in thin parabolic shells,” C. R. Acad. Sci. IIB Mec., 329, No. 1, 75–79 (2001).Google Scholar
  8. 8.
    A. W. Leissa, Vibrations of Shells, 9. F. Pellicano and K. V. Avramov, “Linear and nonlinear dynamics of a circular cylindrical shell connected to a rigid disk,” Comm. Nonlin. Sci. Numer. Simul., 12, No. 4, 496–518 (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. V. Chernobryvko
    • 1
  • K. V. Avramov
  1. 1.Podgornyi Institute for Problems in Machine-BuildingUkrainian National Academy of SciencesKharkovUkraine

Personalised recommendations