Journal of Mathematical Sciences

, Volume 215, Issue 6, pp 734–737 | Cite as

On the Subadditivity of a Scaling Entropy Sequence

  • P. B. Zatitskiy
  • F. V. Petrov

We prove that if a measure-preserving automorphism has a scaling entropy sequence, then this sequence can be chosen nondecreasing and subadditive.


Measure Space Steklov Mathematical Institute Nondecreasing Sequence Pure Point Spectrum Entropy Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Vershik, “Random and universal metric spaces,” in: Fundamental Mathematics Today [in Russian], MCCME, Moscow (2003), pp. 54–88.Google Scholar
  2. 2.
    A. M. Vershik, P. B. Zatitskiy, and F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces,” Cent. Eur. J. Math., 11, No. 3, 379–400 (2013).MathSciNetMATHGoogle Scholar
  3. 3.
    P. B. Zatitskiy and F. V. Petrov, “Correction of metrics,” J. Math. Sci., 181, No. 6, 867–870 (2012).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    A. N. Kolmogorov, “The theory of transmission of information,” in: A. N. Shiryaev (ed.), Selected Works of A. N. Kolmogorov, Vol. III: Information Theory and the Theory of Algorithms, Kluwer, Dordrecht (1993), pp. 6–32.Google Scholar
  5. 5.
    A. M. Vershik, “Dynamic theory of growth in groups: entropy, boundaries, examples,” Russian Math. Surveys, 55, No. 4, 667–733 (2000).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    A. M. Vershik and A. D. Gorbulsky, “Scaled entropy of filtrations of σ-algebras,” Theory Probab. Appl., 52, No. 3, 493–508 (2008).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    A. M. Vershik, “Information, entropy, dynamics,” in: Mathematics of the XXth Century: A View from St.Petersburg [in Russian], MCCME, Moscow (2010), pp. 47–76.Google Scholar
  8. 8.
    A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants,” Markov Process. Related Fields, 16, No. 1, 169–184 (2010).MathSciNetMATHGoogle Scholar
  9. 9.
    A. M. Vershik, “Scaled entropy and automorphisms with a pure point spectrum,” St.Petersburg Math. J., 23, No. 1, 75–91 (2012).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    P. B. Zatitskiy, “On the possible growth rate of a scaling entropy sequence,” Zap. Nauchn. Semin. POMI, 436, 136–166 (2015).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Chebyshev Laboratory, St.Petersburg State University; St.Petersburg Department of Steklov Mathematical InstituteSt.PetersburgRussia
  2. 2.St.Petersburg Department of Steklov Mathematical Institute; St.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations