Journal of Mathematical Sciences

, Volume 215, Issue 6, pp 693–699 | Cite as

Toward the History of Dynamical Entropy: Comparing Two Definitions

  • B. M. Gurevich

We prove that for ergodic automorphisms of a Lebesgue space, the definition of the measure-theoretic entropy suggested in the master thesis by D. Arov (1957) and remained unpublished and the well-known definition of Sinai (1959) reduce to each other, while in general this is not the case.


Entropy Ergodic Theory Lebesgue Space Master Thesis Bernoulli Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Z. Arov, “Theory of information and its transmission via communication channels,” Master thesis, Odessa State University, Odessa (1957).Google Scholar
  2. 2.
    D. Z. Arov, “The influence of V. P. Potapov and M. G. Krein on my scientific work,” Oper. Theory Adv. Appl., 72, 1–16 (1994).MathSciNetMATHGoogle Scholar
  3. 3.
    C. Grillenberger and U. Krengel, “On marginal distributions and isomorphisms of stationary processes,” Math. Z., 149, No. 2, 131–154 (1976).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    A. N. Kolmogorov, “New metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces,” Dokl. Akad. Nauk SSSR, 119, No. 5, 861–864 (1958).MathSciNetMATHGoogle Scholar
  5. 5.
    A. N. Kolmogorov, “On the entropy per unit time as a metric invariant of automorphysms,” Dokl. Akad. Nauk SSSR, 124, No. 4, 754–755 (1959).MathSciNetMATHGoogle Scholar
  6. 6.
    I. P. Kornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory, Springer, New York–Berlin (1980).Google Scholar
  7. 7.
    V. A. Rokhlin, “Lectures on the entropy theory of measure-preserving transformations,” Uspekhi Mat. Nauk, 22, No. 5, 3–56 (1967).MathSciNetMATHGoogle Scholar
  8. 8.
    Ya. G. Sinai, “On the notion of entropy of a dynamical system,” Dokl. Akad. Nauk SSSR, 124, No. 4, 768–771 (1959).MathSciNetMATHGoogle Scholar
  9. 9.
    Ya. G. Sinai, “On a weak isomorphism of transformations with invariant measure,” Mat. Sb., 63, No. 1, 23–42 (1964).MathSciNetGoogle Scholar
  10. 10.
    Ya. G. Sinai, “Letter to the editors of the journal Uspekhi Matematicheskikh Nauk,” Uspekhi Mat. Nauk, 20, No. 4, 232 (1965).Google Scholar
  11. 11.
    Ya. G. Sinai, “Author’s comments to the paper ‘On the notion of entropy of a dynamical system,’ ” in: Ya. G. Sinai, Selecta, Vol. 1 (2014), pp. 9–10.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Moscow State University; Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations