Advertisement

Journal of Mathematical Sciences

, Volume 215, Issue 4, pp 484–498 | Cite as

Predictor-Corrector Difference Scheme for Numerical Solution of the Euler and Navier–Stokes Equations

  • V. M. Kovenya
  • A. A. Eremin
Article
  • 20 Downloads

We generalize optimal splitting schemes for numerical solving the Euler and Navier–Stokes equations in the curvilinear coordinates. We introduce a splitting of the equations, common in both divergence and nondivergence forms, that makes it possible to construct a class of economic difference schemes. The schemes are realized at fractional steps by scalar sweeps and have a large steady margin. The proposed algorithm is tested for stationary and nonstationary problems.

Keywords

Shock Wave Mach Number Corrector Step Fractional Step Multidimensional Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics [in Russian], Nauka, Moscow (1976).Google Scholar
  2. 2.
    A. A. Samarskij, The Theory of Difference Schemes [in Russian], Nauka, Moscow (1989); English transl.: Marcel Dekker, New York (2001).Google Scholar
  3. 3.
    V. M. Kovenya and N. N. Yanenko, Decomposition Method in Problems of Gas Dynamics [in Russian], Nauka, Novosibirsk (1981).MATHGoogle Scholar
  4. 4.
    C. A. J. Fletcher, Computational Techniques for Fluid Dynamics, Springer, Berlin etc. (1988).Google Scholar
  5. 5.
    O. M. Belotserkovskii, Numerical Modeling in Continuum Mechanics [in Russian], Nauka, Moscow (1984).Google Scholar
  6. 6.
    G. I. Marchuk, Splitting and Alternating Direction Methods [in Russian], Akad. Nauk SSSR, Moscow (1986).MATHGoogle Scholar
  7. 7.
    V. M. Kovenya, Difference Methods of Solution of Multidimensional Problems [in Russian], Novosibirsk State Univ. Press, Novosibirsk (2004).Google Scholar
  8. 8.
    J. B. Vos, A. Rizzi, D. Darracq, and E. H. Hirschel, “Navier–Stokes solvers in European aircraft design” Prog. Aerosp. Sci. 38, No. 8, 601–697 (2002).CrossRefGoogle Scholar
  9. 9.
    V. M. Kovenya, Splitting Algorithms as Applied to the Multidimensional Problems of Aerogas Dynamics [in Russian], Izd. SO RAN, Novosibirsk (2014).Google Scholar
  10. 10.
    V. I. Pinchukov and C. Shu, High Order Numerical Methods for Problems of Aerohydrodynamics [in Russian], Izd. SO RAN, Novosibirsk (2000).MATHGoogle Scholar
  11. 11.
    V. D. Lisejkin, “A survey of methods for constructing structured adaptive grids” [in Russian], Zh. Vychisl. Mat. Mat. Fiz. 36, No. 1, 3–41 (1996); English transl.: Comput. Math. Math. Phys. 36, No. 1, 1–32 (1996).Google Scholar
  12. 12.
    G. S. Khakimzyanov, Yu. I. Shokin, V. B. Barakhnin and N. Yu. Shokina, Numerical Simulation of Fluid Flows with Surface Waves [in Russian], Izd. SO RAN, Novosibirsk (2001).Google Scholar
  13. 13.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1978); English transl.: Pergamon Press, Oxford etc. (1972).Google Scholar
  14. 14.
    V. M. Kovenya and A. Yu. Slyunyaev, “Splitting algorithms as applied to the Navier–Stokes equations” [in Russian], Zh. Vychisl. Mat. Mat. Fiz. 49, No. 4, 700–714 (2009); English transl.: Comput. Math. Math. Phys., 49, No. 4, 676–690 (2009).Google Scholar
  15. 15.
    V. I. Zapryagaev and I. N. Kavun, “Experimental study of the reverse flow in the forward separation region in a pulsating flow around a spiked body” [in Russian], Prikl. Mekh. Tekh. Fiz. 48, No. 4, 30–39 (2007); English transl.: J. Appl. Mech. Tech. Phys. 48, No. 4, 492–500 (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Computational Technologies SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations