Advertisement

Journal of Mathematical Sciences

, Volume 215, Issue 4, pp 444–459 | Cite as

Algebraic-Analytic Methods for Constructing Solutions to Differential Equations and Inverse Problems

  • Yu. E. Anikonov
  • M. V. Neshchadim
Article
  • 30 Downloads

We present new algebraic-analytic methods for constructing solutions to differential equations and inverse problems. In particular, we develop a new approach based on the ray method for inverse problems in mathematical physics. Bibliography: 23 titles.

Keywords

Inverse Problem Mathematical Physic Space Versus Partial Solution Invertible Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. E. Anikonov, Formulas in Inverse and Ill-Posed Problems, VSP, Utrecht (1997).CrossRefMATHGoogle Scholar
  2. 2.
    Yu. E. Anikonov and M. V. Neshchadim, “On analytical methods in the theory of inverse problems of mathematical physics” [in Russian], Sib. Elektron. Mat. Izv. 7, 11–61, electronic only (2010).Google Scholar
  3. 3.
    Yu. E. Anikonov and M. V. Neshchadim, “On analytical methods in the theory of inverse problems for hyperbolic equations. I” [in Russian], Sib. Zh. Ind. Mat., 14, No. 1, 27–39 (2011); English transl.: J. Appl. Ind. Math. 5, No. 4, 506–518, electronic only (2011).Google Scholar
  4. 4.
    Yu. E. Anikonov and M. V. Neshchadim, “On analytical methods in the theory of inverse problems for hyperbolic equations. II” [in Russian], Sib. Zh. Ind. Mat., 14, No. 2, 28–33 (2011); English transl.: J. Appl. Ind. Math., 6, No. 1, 6–11 (2012).Google Scholar
  5. 5.
    Yu. E. Anikonov and M. V. Neshchadim, “Analytical methods of the theory of inverse problems for parabolic equations” [in Russian], Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 11, No. 3, 20–35 (2011); English transl.: J. Math. Sci., New York 195, No. 6, 754–770 (2013).Google Scholar
  6. 6.
    Yu. E. Anikonov and M. V. Neshchadim, “Representations for the solutions and coefficients of hyperbolic and elliptical equations” [in Russian], Sib. Elektron. Mat. Izv. 8, C.51–C.73, electronic only (2011).Google Scholar
  7. 7.
    Yu. E. Anikonov and M. V. Neshchadim, “On inverse problems for equations of mathematical physics with parameter” [in Russian], Sib. Elektron. Mat. Izv. 9, 45–64, electronic only (2012).Google Scholar
  8. 8.
    Yu. E. Anikonov and M. V. Neshchadim, “Representations for the solutions and coefficients of evolution equations” [in Russian], Sib. Zh. Ind. Mat. 16, No. 2, 40–49 (2013); English transl.: J. Appl. Ind. Math. 7, No. 3, 326–334 (2013).Google Scholar
  9. 9.
    Yu. E. Anikonov, “Representation of solutions to functional and evolution equations and identification problems” Sib. Elektron. Mat. Izv. 10, 591–614, electronic only (2013).Google Scholar
  10. 10.
    V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of Diffraction of Short Waves, [in Russian], Nauka, Moscow (1972).Google Scholar
  11. 11.
    V. M. Babich, “The highest-dimensional WKB method or ray method. Its analogues and generalizations” [in Russian], Itogi Nauki Tekhn., Ser. Sovrem. Probl. Mat. Fund. Napr. 34, 93–134 (1988); English transl.: Partial differential equations V. Encycl. Math. Sci. 34, 91–131 (1999).Google Scholar
  12. 12.
    V. P. Maslov, Operational Methods [in Russian], Nauka, Moscow (1973).Google Scholar
  13. 13.
    G. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, New York (1974).MATHGoogle Scholar
  14. 14.
    M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM Studies in Applied Mathematics, Philadelphia (1981).CrossRefMATHGoogle Scholar
  15. 15.
    A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific, Singapore (2001).MATHGoogle Scholar
  16. 16.
    R. M. Conte and M. Musette, The Painlevé handbook, Springer, Dordrecht (2008).MATHGoogle Scholar
  17. 17.
    J. F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, New York etc. (1978).MATHGoogle Scholar
  18. 18.
    Yu. I. Kulakov, Theory of Physical Structures [in Russian], Dominiko, Moscow (2004).Google Scholar
  19. 19.
    G. G. Mikhailichenko, Group Symmetry of Physical Structures [in Russian], Barnaul (2003).Google Scholar
  20. 20.
    L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978); English transl.: Academic Press, New York (1982).Google Scholar
  21. 21.
    P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York etc. (1986).CrossRefMATHGoogle Scholar
  22. 22.
    O. V. Kaptsov, Methods of Integration of Partial Differential Equations [in Russian], Fizmatlit, Moscow (2009).Google Scholar
  23. 23.
    A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko, Method of Differential Relations and its Applications to Gas Dynamics [in Russian], Nauka, Novosibirsk (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations