Journal of Mathematical Sciences

, Volume 212, Issue 2, pp 167–181 | Cite as

Effect of Heating on the Subsurface Inhomogeneity of the Electric and Mechanical Fields in Dielectrics

  • O. R. Hrytsyna

The relations of the local gradient theory of dielectrics based on the analysis of the process of local displacements of masses are used for the investigation of the stress–strain state and polarization of a hollow sphere. The surfaces of the sphere are free of force loads and may have different temperatures. It is shown that the relations of this nonlocal theory enable one to estimate the effect of the temperature gradient on the subsurface inhomogeneity of the fields of stresses, polarization, and bound electric charges. These relations also describe the pyroelectric and thermopolarization effects.


Hollow Sphere Temperature Perturbation Specific Density Local Displacement Nonlocal Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Hrytsyna, “Effect of temperature on the surface stresses and polarization of the dielectric layer,” Fiz.-Mat. Model. Inf. Tekh., Issue 14, 29–38 (2011).Google Scholar
  2. 2.
    V. L. Gurevich and A. K. Tagantsev, “Theory for the thermopolarization effect in dielectrics having a center of inversion,” Pis’ma ZhETF, 35, Issue 3, 106–108 (1982).Google Scholar
  3. 3.
    V. F. Kondrat and O. R. Hrytsyna, “Mechanoelectromagnetic interaction in isotropic dielectrics with regard for the local displacement of mass,” Mat. Metody Fiz.-Mekh. Polya, 52, No. 1, 150–158 (2009); English translation : J. Math. Sci., 168, No. 5, 688–698 (2010).Google Scholar
  4. 4.
    V. F. Kondrat and O. R. Hrytsyna, “Linear theories of the electromagnetomechanics of dielectrics,” Fiz.-Mat. Model. Inf. Tekh., Issue 9, 7–46 (2009).Google Scholar
  5. 5.
    V. F. Kondrat and O. R. Hrytsyna, “Equations of the electromagnetothermomechanics of polarized nonferromagnetic solids taking into account the local displacement of mass,” Fiz.-Mat. Model. Inf. Tekh., Issue 8, 69–83 (2008).Google Scholar
  6. 6.
    A. K. Tagantsev, “Pyro-, piezo-, flexoelectric, and thermopolarization effects in ionic crystals,” Uspekhi Fiz. Nauk, 152, No. 3, 423–448 (1987).CrossRefGoogle Scholar
  7. 7.
    A. Askar, P. C. Y. Lee, and A. S. Cakmak, “Lattice dynamics approach to the theory of elastic dielectrics with polarization gradient,” Phys. Rev. B, 1, No. 8, 3525–3537 (1970).CrossRefGoogle Scholar
  8. 8.
    J. D. Axe, J. Harada, and G. Shirane, “Anomalous acoustic dispersion in centrosymmetric crystals with soft optic phonons,” Phys. Rev. B, 1, No. 3, 1227–1234 (1970).CrossRefGoogle Scholar
  9. 9.
    Ya. Burak, V. Kondrat, and O. Hrytsyna, “An introduction of the local displacements of mass and electric charge phenomena into the model of the mechanics of polarized electromagnetic solids,” J. Mech. Mater. Struct., 3, No. 6, 1037–1046 (2008).Google Scholar
  10. 10.
    Ye. Chapla, S. Kondrat, O. Hrytsyna, and V. Kondrat, “On electromechanical phenomena in thin dielectric films,” Task Quart., 13, No. 1–2, 145–154 (2009).Google Scholar
  11. 11.
    A. C. Eringen, “Theory of nonlocal piezoelectricity,” J. Math. Phys., 25, No. 3, 717–727 (1984).MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    A. C. Eringen and B. S. Kim, “Relation between nonlocal elasticity and lattice dynamics,” Cryst. Latt. Def., 7, 51–57 (1977).Google Scholar
  13. 13.
    J. Joffrin and A. Levelut, “Mise en evidence et mesure du pouvoir rotatoire acoustique naturel du quartz-α,” Solid State Comm., 8, No. 19, 1573–1575 (1970).CrossRefGoogle Scholar
  14. 14.
    C. B. Kafadar, “The theory of multipoles in classical electromagnetism,” Int. J. Eng. Sci., 9, No. 9, 831–853 (1971).MATHCrossRefGoogle Scholar
  15. 15.
    W. Ma and L. E. Cross, “Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics,” Appl. Phys. Lett., 78, No. 19, 2920–2921 (2001).CrossRefGoogle Scholar
  16. 16.
    M. S. Majdoub, P. Sharma, and T. Çağin, “Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect,” Phys. Rev. B, 77, No. 12, 125,424 (2008).Google Scholar
  17. 17.
    C. A. Mead, “Anomalous capacitance of thin dielectric structures,” Phys. Rev. Lett., 6, No. 10, 545–546 (1961).CrossRefGoogle Scholar
  18. 18.
    R. D. Mindlin, “Elasticity, piezoelectricity, and crystal lattice dynamics,” J. Elast., 2, No. 4, 217–282 (1972).CrossRefGoogle Scholar
  19. 19.
    A. S. Pine, “Direct observation of acoustical activity in α-quartz,” Phys. Rev. B, 2, No. 6, 2049–2054 (1970).CrossRefGoogle Scholar
  20. 20.
    E. Rafikov, A. Savinov, L. Jastrabik, and V. Trepakov, “Frequency and temperature dependence of the thermopolarization response in dynamic investigations,” Phys. Stat. Sol. A, 144, No. 2, 471–477 (1994).CrossRefGoogle Scholar
  21. 21.
    J. Yang, “A review of a few topics in piezoelectricity,” Appl. Mech. Rev., 59, No. 6, 335–345 (2006).CrossRefGoogle Scholar
  22. 22.
    J. S. Yang and X. M. Yang, “Electric field gradient effect and thin film capacitance,” World J. Eng., 2, 41–45 (2004).Google Scholar
  23. 23.
    P. Zubko, G. Catalan, A. Buckley, P. R. L. Welche, and J. F. Scott, “Strain-gradient-induced polarization in SrTiO3 single crystals,” Phys. Rev. Lett., 99, No. 16, 167601 (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • O. R. Hrytsyna
    • 1
  1. 1.Center of Mathematical Modeling, Pidstryhach Institute for Applied Problems in Mechanics and MathematicsUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations