Journal of Mathematical Sciences

, Volume 211, Issue 6, pp 863–873 | Cite as

Taxation in the Ramsey–Solow Model

  • A. A. Rylova

We study and compare two taxation schemes (based on a single tax rate and a progressive tax rate respectively) within the framework of the Ramsey–Solow model. Bibliography: 6 titles. Illustrations: 3 figures.


Optimal Trajectory Golden Rule Pontryagin Maximum Principle Taxation Scheme Stackelberg Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Moulin, Theórie des Jeux l’ Économie et la Politique Paris, Hermann (1981).Google Scholar
  2. 2.
    S. A. Ashmanov, Introduction to Mathematical Economics [in Russian], Nauka, Moscow (1984).Google Scholar
  3. 3.
    L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze, and E. F.Mishchenko, Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1983); English transl.: Pergamon Press, Oxford etc. (1964).Google Scholar
  4. 4.
    A. A. Rylova, Taxation of Funds in the Ramsey–Solow Model [in Russian], Preprint No. 269, Sobolev Inst. Math. SB RAS (2011).Google Scholar
  5. 5.
    O. Ben-Ayed and Ch. E. Blair, “Computational difficulties of bilevel linear programming,” Oper. Res. 38, No. 3, 556–560 (1990).MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. E. Trubacheva, Existence of a Nontrivial Optimal Solution to the Problem with a Single Tax Rate [in Russian], Preprint No. 190, Sobolev Inst. Math. SB RAS (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations