Journal of Mathematical Sciences

, Volume 211, Issue 6, pp 789–804 | Cite as

Perfect Local Computability of Superatomic Boolean Algebras


We prove that a superatomic Boolean algebra is perfectly locally computable if and only if its rank is a computable ordinal. Bibliography: 7 titles.


Boolean Algebra Computable Function Injective Homomorphism Computable Presentation Perfect System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Goncharov and Yu. L. Ershov, Constructive Models, Kluwer Academic/Plenum Press, New York (2002).Google Scholar
  2. 2.
    R. Miller and D. Mulcahey, “Perfect local computability and computable simulations,” Lect. Notes Comput. Sci. 5028, 447–456 (2008).MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Miller, “Locally computable structures,” Lect. Notes Comput. Sci. 4497, 575–584 (2007).CrossRefGoogle Scholar
  4. 4.
    S. S. Goncharov, “Constructivizability of superatomic Boolean algebras” [in Russian], Algebra Logika 12, No. 1, 31–40 (1973).Google Scholar
  5. 5.
    S. S. Goncharov, Countable Boolean Algebras and Decidability, Kluwer Academic/Plenum Publishers, New York (1997).MATHGoogle Scholar
  6. 6.
    H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).MATHGoogle Scholar
  7. 7.
    G. E. Sacks, Higher Recursion Theory Springer, Berlin etc. (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations