Journal of Mathematical Sciences

, Volume 211, Issue 4, pp 542–578 | Cite as

Compact Subdifferentials in Banach Spaces and Their Applications to Variational Functionals

  • I. V. Orlov
  • Z. I. Khalilova


We develop a theory of sublinear operators with compact values. Then, based on this theory, we construct a theory of first-order compact subdifferentials for maps in Banach spaces. The results are applicable to the calculation of compact subdifferentials of variational functionals with nonsmooth Lagrangians.


Banach Space Radon Composition Operator Normed Cone Convex Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. K. Basaeva, “On subdifferentials on not everywhere defined convex operators,” Vladikavkaz. Mat. Zh., 8, No. 4, 6–12 (2006).MathSciNetGoogle Scholar
  2. 2.
    D. C. Bertsekas, A. Nedid, and A. E. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, Belmont (2003).MATHGoogle Scholar
  3. 3.
    E. V. Bozhonok, “Some conditions of the existence of compact extrema for variational functionals of several variables in the Sobolev space H 1,” Oper. Theory Adv. Appl., 190, 141–155 (2009).MathSciNetGoogle Scholar
  4. 4.
    F. Clarke, Optimization and Nonsmooth Analysis, Wiley–Interscience, New York etc. (1983).Google Scholar
  5. 5.
    V. F. Dem’yanov and V. A. Roshchina, “Generalized subdifferentials and exhausters,” Vladikavkaz. Mat. Zh., 8, No. 4, 19–31 (2006).MathSciNetGoogle Scholar
  6. 6.
    V. F. Dem’yanov and A. M. Rubinov, Foundations of Nonsmooth Analysis and Quasi-Differential Calculus [in Russian], Nauka, Moscow (1990).Google Scholar
  7. 7.
    I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam–Oxford–New York (1976).MATHGoogle Scholar
  8. 8.
    B. Fuchssteiner and W. Lusky, Convex Cones, North-Holland, Amsterdam–New York–Oxford (1981).MATHGoogle Scholar
  9. 9.
    K. Keimel and W. Roth, Ordered Cones and Approximation, Springer-Verlag, Heidelberg–Berlin–New York (1992).MATHGoogle Scholar
  10. 10.
    A. G. Kusraev and S. S. Kutateladze, “Local convex analysis,” Current Probl. Math., 19, 155–206 (1982).MathSciNetGoogle Scholar
  11. 11.
    S. S. Kutateladze, “Convex operators,” Usp. Mat. Nauk, 34, No. 1, 167–196 (1979).MATHMathSciNetGoogle Scholar
  12. 12.
    V. L. Levin, “Subdifferentials of convex functionals,” Usp. Mat. Nauk, 25, No. 4, 183–184 (1970).MATHGoogle Scholar
  13. 13.
    Yu. E. Linke, “Applications of a theorem of Michael and its conversions into sublinear operators,” Mat. Zametki, 52, Nos. 1-2, 680–686 (1992).MATHMathSciNetGoogle Scholar
  14. 14.
    Yu. E. Linke, “Conditions for the extension of bounded linear and sublinear operators with values in Lindenstrauss spaces,” Sib. Mat. Zh., 51, No. 6, 1061–1074 (2010).MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Yu. E. Linke, “Universal spaces of subdifferentials of sublinear operators with values in the cone of bounded lower semicontinuous functions,” Mat. Zametki, 89, Nos. 3-4, 519–527 (2011).MATHMathSciNetGoogle Scholar
  16. 16.
    I. V. Orlov, “K-differentiability and K-extrema,” Ukr. Math. Bull., 3, No. 1, 95–112 (2006).MathSciNetGoogle Scholar
  17. 17.
    I. V. Orlov, “Compact extrema: General theory and its applications to the variational functionals,” Oper. Theory Adv. Appl., 190, 397–417 (2009).Google Scholar
  18. 18.
    I. V. Orlov, “Hilbert compacta, compact ellipsoids, and compact extrema,” J. Math. Sci. (N.Y.), 164, No. 4, 637–647 (2010).MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    I. V. Orlov and F. S. Stonyakin, “Compact variation, compact subdifferentiability and indefinite Bochner integral,” Methods Funct. Anal. Topology, 15, No. 1, 74–90 (2009).MATHMathSciNetGoogle Scholar
  20. 20.
    I. V. Orlov and F. S. Stonyakin, “Compact subdifferentials: the finite increment formula and related results,” J. Math. Sci. (N.Y.), 170, No. 2, 251–269 (2010).MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    I. V. Orlov and F. S. Stonyakin, “The limit form of the Radon–Nikodym property is valid in any Frechét space,” J. Math. Sci. (N.Y.), 180, No. 6, 731–747 (2012).MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    E. S. Polovinkin, Convex Analysis: A Textbook [in Russian], MIPT, Moscow (2006).Google Scholar
  23. 23.
    E. S. Polovinkin and M. V. Balashov, Elements of Convex and Strongly Convex Analysis [in Russian], Fizmatlit, Moscow (2006).Google Scholar
  24. 24.
    B. N. Pshenichny, Convex Analysis and Extremal Problems [in Russian], Nauka, Moscow (1980).Google Scholar
  25. 25.
    A. Ranjbari and H. Saiflu, “Some results on the uniform boundedness theorem in locally convex cones,” Methods Funct. Anal. Topology, 15, No. 4,361–368 (2009).MATHMathSciNetGoogle Scholar
  26. 26.
    Yu. G. Reshetnyak, “Extremum conditions for a class of functionals of the calculus of variations with a nonsmooth integrand,” Sib. Mat. Zh., 28, No. 6, 90–101 (1987).MATHMathSciNetGoogle Scholar
  27. 27.
    R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, New Jersey (1970).MATHCrossRefGoogle Scholar
  28. 28.
    W. Roth, “A uniform boundedness theorem for locally convex cones,” Proc. Am. Math. Soc., 126, No. 7, 1973–1982 (1998).MATHCrossRefGoogle Scholar
  29. 29.
    A. M. Rubinov, “Sublinear operators and their applications,” Usp. Mat. Nauk, 32, No. 4, 113–174 (1977).MATHMathSciNetGoogle Scholar
  30. 30.
    A. M. Rubinov, Superlinear Multivalued Mappings and Their Applications to Problems of Mathematical Economics [in Russian], Nauka, Leningrad (1980).Google Scholar
  31. 31.
    F. S. Stonyakin, “Comparative analysis of the notion of a compact subdifferential,” Bull. Kharkiv Nat. Univ., Ser. Math. Appl. Math. Mech, 850, 11–21 (2009).MATHGoogle Scholar
  32. 32.
    V. M. Tikhomirov, Convex Analysis [in Russian], Contemporary Problems in Mathematics. Fundamental Directions, 14, All-Union Institute for Scientific and Technical Information (VINITI), Moscow (1987), pp. 5–101.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Vernadskii Tavria National UniversitySimferopolUkraine

Personalised recommendations