Journal of Mathematical Sciences

, Volume 210, Issue 4, pp 399–428 | Cite as

Approximation of Thin Three-Dimensional Plates with Smooth Lateral Surface by Polygonal Plates

  • S. A. Nazarov
  • G. A. Chechkin

In a thin isotropic homogeneous three-dimensional plate of thickness h, we consider the limit passage of elastic fields as h → +0. It is assumed that the connected component Γ N of the boundary of the median cross section ω is a broken line with links of length ah, where a > 0 is a fixed parameter. We consider the Lamé equations with the Neumann condition (a free surface) on the plate bases, the Dirichlet condition (a rigidly clamped surface) on a smooth part, and some linear contact conditions on a ribbed part of the lateral surface. For the solution to the boundary value problem we obtain an asymptotic expansion with different boundary layers. In the two-dimensional model, new boundary conditions, different from the contact ones, arise on the limit smooth contour Γ0 , thereby for the spatial elasticity problem, we confirm the Babuška paradox caused by linear boundary conditions on the plate edge, but not unilateral constraints of Signorini type. Bibliography: 42 titles. Illustrations: 5 figures.


Dirichlet Condition Unilateral Constraint Rigid Displacement Asymptotic Term Limit Passage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. M. Sapondzhyan, “Bending of a freely supported polygonal plate” [in Russian], Izv. Akad. Nauk Arm. SSR 5, No. 2, 29–46 (1952).MATHGoogle Scholar
  2. 2.
    O. M. Sapondzhyan, Bending of Thin Elastic Plates [in Russian], Aiastan, Erevan (1975).Google Scholar
  3. 3.
    I. Babuška, “Stability of the domain with respect to a perturbation of the boundary of fundamental problems of the theory of partial differential equations, mainly in connection with the theory of elasticity, I,” Czech. Math. J. II, No. 1, 76–105 (1961); No. 2, 165–203 (1961).Google Scholar
  4. 4.
    V. G. Maz’ya and S. A. Nazarov, “Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains” [in Russian], Izv. Akad. Nauk SSSR, Ser. Mat. 50, No. 6, 1156–1177 (1986); English transl.: Math. USSR, Izv. 29, 511–533 (1987).Google Scholar
  5. 5.
    I. Babuška, J. Pitkaranta, “The plate paradox for hard and soft simple support,” SIAM J. Math. Anal. 21, No. 3, 551–576 (1990).MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. A. Nazarov and M. V. Olyushin, “Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lamé system,” Izv. Ross. Akad. Nauk, Ser. Mat. 61, No. 3, 159–186 (1997); English transl.: Izv. Math. 61, No. 3, 619–646 (1997).Google Scholar
  7. 7.
    W. G. Mazja, S. A. Nasarow, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. 1 and 2 [in Germman], Akademie-Verlag, Berlin (1991); English transl.: V. Maz’ya, S. Nazarov, B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vols. 1, 2, Birkh¨auser, Basel (2000).Google Scholar
  8. 8.
    G. Kirchhoff, “¨Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe,” J. Reine Angew. Math. 40, 55–88 (1850).MathSciNetGoogle Scholar
  9. 9.
    E. Reissner, “On the theory of bending of elastic plates,” J. Math. Phys. 23, 184–191 (1944).MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    B. V. Kostrov, “Diffraction of a plane wave by a smooth rigid wedge in an unbounded elastic medium in absence of friction” [in Russian], Prikl. Mat. Mekh. 30, No. 1, 198–203 (1966); English transl.: J. Appl. Math. Mech. 30, 244–250 (1966).Google Scholar
  11. 11.
    N. F. Morozov and I. L. Surovtsova, “A problem of dynamic loading of a plane elastic region whose contour has corner points” [in Russian], Prikl. Mat. Mekh. 61, No. 4, 654–659 (1997); English transl.: J. Appl. Math. Mech. 61, No. 4, 633–638 (1997).Google Scholar
  12. 12.
    V. G. Maz’ya and S. A. Nazarov, “On the Sapondzhan–Babushka paradox in problems of the theory of thin plates” [in Russian], Dokl. Akad. Nauk Arm. SSR 78, 127–130 (1984).MATHGoogle Scholar
  13. 13.
    S. A. Nazarov and G. Sweers, “A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners,” J. Differ. Equ. 233, No. 1, 151–180 (2007).MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, M. (1970).Google Scholar
  15. 15.
    K. Rajaiah and A. K. Rao, “Effect of boundary conditions description on convergence of solution in a boundary–value problem,” J. Comput. Phys. 3, No. 2, 190–201 (1968).MATHCrossRefGoogle Scholar
  16. 16.
    K. Rajaiah, A. K. Rao, “On the polygone–circle paradox,” J. Appl. Mech. 48, 195–196 (1981).CrossRefGoogle Scholar
  17. 17.
    G. A. Chechkin, D. Lukkassen, and A. Meidell, “On the Sapondzhyan–Babuˇska paradox,” Appl. Anal. 87, No. 12, 1443–1460 (2008).MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    S. A. Nazarov, “Asymptotic analysis of an arbitrarily anisotropic plate of variable thickness (shallow shell)” [in Russian], Mat. Sb. 191, No. 7, 129–159 (2000); English transl.: Sb. Math. 191, No. 7, 1075–1106 (2000).Google Scholar
  19. 19.
    I. S. Zorin and S. A. Nazarov, “Edge effect in the bending of a thin three-dimensional plate,” Prikl. Mat. Mekh., 53, No. 4, 642–650 (1989); English transl.: J. Appl. Math. Mech., 53, No. 4, 500–507 (1989).Google Scholar
  20. 20.
    I. S. Zorin and S. A. Nazarov, “Two-term asymptotics of the solution to the problem on longitudinal deformation of a plate clamped at the edge” [in Russian], Vychisl. Mekh. Deform. Tverd. Tela No. 2, 10–21 (1992). 1992. V. 2. P. 10–21. (Russian)Google Scholar
  21. 21.
    M. Dauge, I. Gruais, and A. Rössle, “The influence of lateral boundary conditions on the asymptotics in thin elastic plates,” SIAM J. Math. Anal. 31, No. 2, 305–345 (1999/00).Google Scholar
  22. 22.
    A. Stilyanou and G. Sweers, “Comparing hinged and supported rectangular plates,” C. R. Méc., Acad. Sci. Paris 338, No. 9, 489–492 (2010).Google Scholar
  23. 23.
    S. A. Nazarov, A. Stilyanou, and G. Sweers, “Hinged and supported plates with corners,” Z. Angew. Math. Phys. 63, No. 5, 929–960 (2012).MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    B. A. Shoikhet, “On asymptotically exact equations of thin plates of complicated structure” [in Russian], PRikl. Mat. Meh. 37, No. 5, 914–924 (1973); English transl.: J. Appl. Math. Mech. 37, No. 5, 867–877 (1973).Google Scholar
  25. 25.
    P. G. Ciarlet and P. Destuynder, “A justification of the two-dimensional linear plate model,” J. Mécanique 18, 315–344 (1979).MATHMathSciNetGoogle Scholar
  26. 26.
    E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer, Berlin etc. (1980).MATHGoogle Scholar
  27. 27.
    P. G. Ciarlet, Mathematical Elasticity I. Three Dimensional Elasticity, North-Holland, Amsterdam (1988).MATHGoogle Scholar
  28. 28.
    S. A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates [in Russian], Nauchnaya Kniga (IDMI), Novosibirsk (2002).Google Scholar
  29. 29.
    V. A. Kondrat’ev, “Boundary problems for elliptic equations in domains with conical or angular points” [in Russian], Trudy Moskov. Mat. Ob-va 16, 209–298 (1967); English transl.: Proc. Mosk. Math. Soc. 16, 227–31 (1967).Google Scholar
  30. 30.
    V. G. Maz’ya and B. A. Plamenevskii, “On the coefficients in the asymptotics of the solution of elliptic boundary-value problems in domains with conical points” [in Russian], Math. Nachr. 76, 29–60 (1977); English transl.: Am. Math. Soc. Transl. Ser. 2 123, 57–88 (1984).Google Scholar
  31. 31.
    Nazarov S.A. and Plamenevskii B.A. Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin etc. (1984).Google Scholar
  32. 32.
    V. Z. Parton and P. I. Perlin, Mathematical Methods of the Theory of Elasticity [in Russian], Nauka, Moscow (1981).Google Scholar
  33. 33.
    V. G. Maz’ya and B. A. Plamenevskii, “On elliptic boundary value problems in domains with piecewise smooth boundary” [in Russian], In: Proceedings of the Symposium on Continuum Mechanics and Related Problems of Analysis (Tbilisi, 1971), Vol. 1, pp. 171–181, Metsniereba, Tbilisi (1973).Google Scholar
  34. 34.
    S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary value problems and the algebraic description of their attributes” [in Russian], Usp. Mat. Nauk 54, No. 5, 77–142 (1999); English transl.: Russ. Math. Surv. 54, No. 5, 947–1014 (1999). 142 (1999).Google Scholar
  35. 35.
    O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973); English transl.: Springer, New York etc. (1985).Google Scholar
  36. 36.
    L. Bers, F. John, and M. Schechter, Partial Differential Equations, Am. Math. Soc., Providence, RI (1964).Google Scholar
  37. 37.
    S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II” Comm. Pure Appl. Math. 17, 35–92 (1964).MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    J. L. Lions and E. Magenes Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin (1972).Google Scholar
  39. 39.
    S. A. Nazarov, “Korn inequalities that are asymptotically exact for thin domains” [in Russian], Vestn. St.-Petersburg Univ., Vyp. 2, 19–24 (1992); English transl.: Vestnik St.- Petersburg Univ. Mat. Meh. Astronom., 25, No. 2, 18–22 (1992).Google Scholar
  40. 40.
    S. A. Nazarov, “Selfadjoint extensions of the operator of the Dirichlet problem in a 3- dimensional region with an edge]] [in Russian] Sib. Zh. Ind. Mat. 11, No. 1, 80–95 (2008).Google Scholar
  41. 41.
    V. A. Kondrat’ev and O. A. Oleinik, “Boundary-value problems for a system in elasticity theory in unbounded domains. Korn’s inequalities [in Russian], Usp. Mat. Nauk 43, No. 5, 55–98 (1988); English transl.: Russ. Math. Surv. 43, No. 5, 65–119 (1988).Google Scholar
  42. 42.
    V. A. Kondrat’ev and O. A. Oleinik, “On the dependence of the constant in Korn’s inequality on parameters characterizing the geometry of the region” [in Russian], Usp. Mat. Nauk 44, No. 6, 157–158 (1989); English transl.: Russ. Math. Surv. 44, No. 6, 187–189 (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.St. Petersburg State University St. Petersburg State Polytechnical University, Institute for Problems in Mechanical Engineering RASSt. PetersburgRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations