Advertisement

Journal of Mathematical Sciences

, Volume 207, Issue 5, pp 698–717 | Cite as

Graphs Defined by Orthogonality

  • B. R. Bakhadly
  • A. E. Guterman
  • O. V. Markova
Article
  • 79 Downloads

The notion of graph generated by the mutual orthogonality relation for the elements of an associative ring is introduced. The main attention is paid to the commutative rings and to the matrix ring over a field and its various subrings and subsets. In particular, the diameters of the orthogonality graphs of the full matrix algebra over an arbitrary field and its subsets consisting of diagonal, diagonalizable, triangularizable, and nilpotent matrices are computed. Bibliography: 36 titles.

Keywords

Local Ring Commutative Ring Zero Divisor Matrix Ring Minimal Prime Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Abdollahi, “Commuting graphs of full matrix rings over finite fields,”Linear Algebra Appl., 428, 2947–2954 (2008).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    A. Abdollahi, S. Akbari, and H. R. Maimani, “Non-commuting graph of a group,” J. Algebra, 298, No. 2, 468–492 (2006).CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    S. Akbari, H. Bidkhori, and A. Mohammadian, “Commuting graphs of matrix algebras,” Commun. Algebra, 36, 4020–4031 (2008).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    S. Akbari, M. Ghandehari, M. Hadian, and A. Mohammadian, “On commuting graphs of semisimple rings,” Linear Algebra Appl., 390, 345–355 (2004).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    S. Akbari, H. R. Maimani, and S. Yassemi, “When zero-divisor graph is planar or a complete r-partite graph,” J. Algebra, 270, 169–180 (2003).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    S. Akbari and A. Mohammadian, “On the zero-divisor graph of a commutative ring,” J. Algebra, 274, 847–855 (2004).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    S. Akbari and A. Mohammadian, “Zero-divisor graphs of non-commutative rings,” J. Algebra, 296, 462–479 (2006).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    S. Akbari and A. Mohammadian, “On zero-divisor graphs of finite rings,” J. Algebra, 314, 168–184 (2007).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    S. Akbari, A. Mohammadian, H. Radjavi, and P. Raja, “On the diameters of commuting graphs,” Linear Algebra Appl., 418, 161–176 (2006).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    S. Akbari and P. Raja, “Commuting graphs of some subsets in simple rings,” Linear Algebra Appl., 416, 1038–1047 (2006).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, “The zero-divisor graph of a commutative ring. II,” Lect. Notes Pure Appl. Math., 220, 61–72 (2001).MathSciNetGoogle Scholar
  12. 12.
    D. F. Anderson, R. Levy, and J. Shapiro, “Zero-divisor graphs, von Neumann regular rings, and Boolean algebras,” J. Pure Appl. Algebra, 180, No. 3, 221-241 (2003).CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    D. F. Anderson and P. S. Livingston, “The zero-divisor graph of a commutative ring,” J. Algebra, 217, 434–447 (1999).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra [Russian translation], sMir, Moscow (1972).Google Scholar
  15. 15.
    J. K. Baksalary and J. Hauke, “A further algebraic version of Cochran’s theorem and matrix partial orderings,” Linear Algebra Appl., 127, 157–169 (1990).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    I. Beck, “Coloring of commutative rings,” J. Algebra, 116, 208–226 (1988).CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    G. Dolinar, B. Kuzma, and P. Oblak, “On maximal distances in a commuting graph,” Electron. J. Linear Algebra, 23, 243–256 (2012).MATHMathSciNetGoogle Scholar
  18. 18.
    G. Dolinar, A. E. Guterman, B. Kuzma, and P. Oblak, “Commuting graphs and extremal centralizers,” Ars Math. Contemp., 7, No. 2, 453–459 (2014).MATHMathSciNetGoogle Scholar
  19. 19.
    G. Dolinar, A. E. Guterman, B. Kuzma, and P. Oblak, “Extremal matrix centralizers,” Linear Algebra Appl., 438, No. 7, 2904–2910 (2013).CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    D. Dolzan and P. Oblak, “Commuting graph of matrices over semirings,” Linear Algebra Appl., 435, 1657–1665 (2011).CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    F. Harary, Graph Theory, Addison Wesley (1969).Google Scholar
  22. 22.
    I. N. Herstein, Topics in Algebra, 2nd edition, Wiley (1975).Google Scholar
  23. 23.
    M. Giudici and A. Pope, “The diameters of commuting graphs of linear groups and matrix rings over the integers modulo m,” Austral. J. Comb., 48, 221–230 (2010).MATHMathSciNetGoogle Scholar
  24. 24.
    L. C. Grove. Algebra, Academic Press, New York (1983).MATHGoogle Scholar
  25. 25.
    A. E. Guterman and M. A. Efimov, “Monotone maps on matrices of index one,” Zap. Nauchn. Sem. POMI, 405, 67–96 (2012).Google Scholar
  26. 26.
    A. Iranmanesh and A. Jafarzadeh, “On the commuting graph associated with the symmetric and alternating groups,” J. Alg. Appl., 7, 129–146 (2008).CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    D. C. Kleinecke, “On operator commutators,” Proc. Amer. Math. Soc., 8, 535–536 (1957).CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    T. G. Lucas, “The diameter of a zero divisor graph,” J. Algebra, 301, 174–193 (2006).CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    A. R. Moghaddamfar, “About noncommuting graphs,” Sibirsk. Mat. Zh., 47, No. 5, 1112–1116 (2006).MATHMathSciNetGoogle Scholar
  30. 30.
    A. Mohammadian, “On commuting graphs of finite matrix rings” Commun. Algebra, 38, 988–994 (2010).CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    P. G. Ovchinnikov, “Automorphisms of the poset of skew projections,” J. Funct. Analysis, 115, 184–189 (1993).CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    F. V. Shirokov, “Proof of a conjecture of Kaplansky,” Uspekhi Mat. Nauk, 11, No. 4 (70), 167–168 (1956).Google Scholar
  33. 33.
    D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices [in Russian], Nauka i Tekhnika, Minsk (1966).Google Scholar
  34. 34.
    P. Šemrl, “Order-preserving maps on the poset of idempotent matrices,” Acta Sci. Math. (Szeged), 69, 481–490 (2003).MATHMathSciNetGoogle Scholar
  35. 35.
    O. Taussky, “Commutativity of finite matrices,” Amer. Math. Monthly, 64, 239–255 (1957).CrossRefGoogle Scholar
  36. 36.
    J. H. M. Wedderburn, Lectures on Matrices (Colloquium Publications, XVII), American Mathematical Society (1934).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • B. R. Bakhadly
    • 1
  • A. E. Guterman
    • 1
  • O. V. Markova
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations