Advertisement

Journal of Mathematical Sciences

, Volume 207, Issue 3, pp 389–409 | Cite as

Almost Geodesic Mappings of Spaces with Affine Connection

  • V. E. Berezovskii
  • J. Mikě
Article

Abstract

This paper is devoted to the further development of the theory of almost geodesic mappings of spaces with affine connection.

Keywords

Projective Space Projective Mapping Riemannian Space Riemann Tensor Planar Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Adamów, “On reduced almost geodesic mappings in Riemannian spaces,” Demonstr. Math., 15, 925–934 (1982).MATHGoogle Scholar
  2. 2.
    D. V. Beklemishev, “Differential geometry of spaces with almost complex structure,” in: Itogi Nauki Tekh., Probl. Geom., All-Union Institute for Scientific and Technical Information (VINITI), Moscow (1963), pp. 165–212.Google Scholar
  3. 3.
    V. E. Berezovskii, A new form of fundamental equations of almost geodesic mappings of type π1, Deposited at the Ukrainian Institute for Scientific and Technical Information (UkrNIITI) 16.03.1986, No. 129, Kiev (1986).Google Scholar
  4. 4.
    V. E. Berezovskii, “On almost geodesic mappings of spaces with affine connection,” in Proc. All-Union Geom. Conf., Kishinev (1986), p. 41.Google Scholar
  5. 5.
    V. E. Berezovskii, “On first-type almost geodesic mappings of spaces with affine connection preserving n-orthogonal systems of hypersurface,” in: Proc. Regional Conf., Uman (1990), p. 2.Google Scholar
  6. 6.
    V. E. Berezovskii, “On first-type almost geodesic mappings of Riemannian spaces preserving the system of n-orthogonal hypersurfaces,” Deposited at the Ukrainian Institute for Scientific and Technical Information (UkrNIITI) 08.05.1991, No. 652, Kiev (1991).Google Scholar
  7. 7.
    V. E. Berezovskii, “On almost geodesic mappings of spaces with affine connection of type π1,” Deposited at the Ukrainian Institute for Scientific and Technical Information (UkrNIITI) 08.05.1991, No. 654, Kiev (1991).Google Scholar
  8. 8.
    V. E. Berezovskii, “On a particular case of first-type almost geodesic mappings of spaces with affine connection,” in: Proc. Int. Conf. “Lobachevski and Modern Geometry,” Kazan’ (1992), p. 12.Google Scholar
  9. 9.
    V. E. Berezovskii, “On special almost geodesic mappings of the type π1,” in: Satelite Conf. of ICM in Berlin, Brno (1998), p. 7.Google Scholar
  10. 10.
    V. E. Berezovskii, “First type almost geodesic canonical mappings of spaces with affine connection,” in: Proc. Int. Conf. Dedicated to 90th Birthday of G. F. Laptev, Moscow (1999), p. 6.Google Scholar
  11. 11.
    V. E. Berezovskii and J. Mikeš, “On almost geodesic mappings of spaces with affine connection,” in: Proc. All-Union Geom. Conf., Odessa (1984), p. 18.Google Scholar
  12. 12.
    V. E. Berezovskii and J. Mikeˇs, “On classification of almost geodesic mappings of affinely connected spaces,” Proc. Int. Conf. “Differential Geometry and Its Applications–1988,” Dubrovnik, Yugoslavia (1989), pp. 41–48.Google Scholar
  13. 13.
    V. E. Berezovskii and J. Mikeš, A new classification of almost geodesic mappings of spaces with affine connection, Deposited at the Ukrainian Institute for Scientific and Technical Information (UkrNIITI) 08.05.1991, No. 653, Kiev (1991).Google Scholar
  14. 14.
    V. E. Berezovskii and J. Mikeš, “On a classification of almost geodesic mappings,” in: Proc. Conf. Dedicated to 200th Birthday of N. I. Lobachevski, Odessa (1992), p. 54.Google Scholar
  15. 15.
    V. E. Berezovskii and J. Mikeš, “On a classification of almost geodesic mappings of affinely connection spaces,” Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 35, 21–24 (1996).MathSciNetGoogle Scholar
  16. 16.
    V. E. Berezovskii and J. Mikeš, “On almost geodesic mappings of type π1 which maintain a system n-orthogonal hypersurfaces,” in: Conf. Differ. Geom., Budapest (1996), p. 21.Google Scholar
  17. 17.
    V. E. Berezovskii and J. Mikeš, “On almost geodesic mappings of the type π1 of Riemannian spaces preserving a system n-orthogonal hypersurfaces,” Rend. Circ. Mat. Palermo (2), 59, 103–108 (1999).Google Scholar
  18. 18.
    V. E. Berezovskii and J. Mikeš, “On almost geodesic mappings of spaces with affine connection,” in: Proc. 5th Int. Conf. on Geometry and Topology in Honour of A. V. Pogorelov, Cherkassy (2003), pp. 14–15.Google Scholar
  19. 19.
    V. E. Berezovskii and J. Mikeš, “On special almost geodesic mappings of type π1 of spaces with affine connection,” Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 43, 21–26 (2004).MathSciNetGoogle Scholar
  20. 20.
    V. E. Berezovskii and J. Mikeš, “On special almost geodesic mappings of type π1 of spaces with affine connection,” in: Proc. 11th Math. Conf., Kiev (2006), p. 320.Google Scholar
  21. 21.
    V. E. Berezovskii and J. Mikeš, “On a particular case of almost geodesic mappings of the first type,” in: Proc. Int. Geom. Semin. Named after G. F. Laptev, Penza (2007), pp. 7–17.Google Scholar
  22. 22.
    V. E. Berezovskii and J. Mikeš, “On main equations in Cauchy type form of special almost geodesic mappings of type π1,” in: Proc. 12th Math. Conf., Kiev (2008), p. 500.Google Scholar
  23. 23.
    V. E. Berezovskii and J. Mikeš, “On almost geodesic canonical mappings of the first type,” in: Proc. Int. Conf. “Geometry in Odessa,” Odessa (2009), p. 43.Google Scholar
  24. 24.
    V. E. Berezovskii and J. Mikeš, “On almost geodesic mappings of the first type,” in: Proc. Ukrainian Mathematical Congress [in Russian], Kiev (2009); http://www.imath.kiev.ua/~congress2009/about.html
  25. 25.
    V. E. Berezovskii and J. Mikeš, “Almost geodesic’ mappings of type π1 onto generalized Riccisymmetric spaces,” Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat., 151, No. 4, 9–14 (2009).Google Scholar
  26. 26.
    V. E. Berezovskii and J. Mikeš, “On special case of almost geodesic mappings of spaces with affine connection preserwing the Ricci tensor,” in: Proc. 13th Math. Conf., Kiev (2010), p. 55.Google Scholar
  27. 27.
    V. E. Berezovskii and J. Mikeš, “On almost geodesic mappings of type π1 which preserve northogonal system of hyperplanes of Riemannian spaces,” in: Proc. Int. Conf. “Geometry in Odessa–2010,” Odessa (2010), p. 71.Google Scholar
  28. 28.
    V. E. Berezovskii and J. Mikeš, “(n−2)-Projective spaces of the first type,” in: Proc. Int. Conf. “Geometry in Odessa–2010,”, Odessa (2010).Google Scholar
  29. 29.
    V. E. Berezovskii and J. Mikeš, “(n − 2)-Projective spaces of the first type,” Izv. Penz. Univ., Fiz.-Mat. (2011).Google Scholar
  30. 30.
    V. E. Berezovskii, J. Mikeš, and A. Vanžurová, “Canonical almost geodesic mappings of type π1 onto pseudo-Riemannian manifolds,” in: Proc. Int. Conf. “Differential Geometry and Its Applications” in Honour of L. Euler, Olomouc, August, 2007, World Sci. Publ. (2008), pp. 65– 76.Google Scholar
  31. 31.
    V. E. Berezovskii, J. Mikeš, and A. Vanžurová, “Almost geodesic mappings onto generalized Ricci-symmetric manifolds,” in: Proc. 9th Int. Conf. APLIMAT 2010, Bratislava (2010).Google Scholar
  32. 32.
    V. E. Berezovskii, J. Mikeš, and A. Vanžurová, “Almost geodesic mappings onto generalized Ricci-symmetric manifolds,” Acta Math. Acad. Paedagog. Nyhάzi. (N.S.), 26, No. 2, 221–230 (2010).Google Scholar
  33. 33.
    V. E. Berezovskii, J. Mikeš, and A. Vanžurová, “Fundamental PDE’s of the canonical almost geodesic mappings of type \( \tilde{\pi}1 \),” arXiv:1006.3200 (2010).Google Scholar
  34. 34.
    V. E. Berezovskii, J. Mikeš, and A. Vanžurová, “On a class of curvature preserving almost geodesic mappings of manifolds with affine connection,” in: Proc. 10th Int. Conf. APLIMAT 2011, Bratislava (2011), p. 623–628.Google Scholar
  35. 35.
    H. W. Brinkmann, “Einstein spaces which are mapped conformally on each other,” Math. Ann., 94, 119–145 (1925).CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    V. M. Chernyshenko, “Affinely connected spaces with certain complex of geodesics,” Nauch. Zap. Dnepropetrovsk. Univ., 55, No. 6, 105–110 (1961).Google Scholar
  37. 37.
    V. M. Chernyshenko, “Spaces with special complex of geodesic lines,” Tr. Semin. Vector. Tensor. Anal., 253–268 (1961).Google Scholar
  38. 38.
    V. V. Domashev and J. Mikeš, “To the theory of holomorphically projective mappings of K¨ahlerian spaces,” Mat. Zametki, 23, No. 2, 297–303 (1978).MATHMathSciNetGoogle Scholar
  39. 39.
    L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press (1926).Google Scholar
  40. 40.
    F. V. Emel’yanov and V. F. Kirichenko, “On class-π2 almost geodesic mappings of almost Hermitian manifolds,” Mat. Zametki, 90, No. 4, 517–526 (2011).CrossRefMathSciNetGoogle Scholar
  41. 41.
    L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, and A. P. Shirokov, “Differential geometric structures on manifolds,” Itogi Nauki Tekh. Probl. Geom., All-Union Institute for Scientific and Technical Information (VINITI), Moscow (1979).Google Scholar
  42. 42.
    L. E. Evtushik, V. A. Kiosak, and J. Mikeš, “On mobility of Riemannian spaces with respect to conformal mappings to Einstein spaces,” Izv. Vyssh. Ucheb. Zaved., Ser. Mat., 8, 36 41 (2010).Google Scholar
  43. 43.
    I. Hinterleitner, J. Mikeš, and J. Stránská, “Infinitesimal F-planar transformations,” Izv. Vyssh. Ucheb. Zaved., Ser. Mat., 4, 13–18 (2008).Google Scholar
  44. 44.
    I. Hinterleitner and J. Mikeš, “On F-planar mappings of spaces with affine connections,” Note Mat., 27, No. 1, 111–118 (2007).MATHMathSciNetGoogle Scholar
  45. 45.
    I. Hinterleitner and J. Mikeš, “Projective equivalence and spaces with equiaffine connection,” Fundam. Prikl. Mat., 16, No. 1, 47–54 (2010).Google Scholar
  46. 46.
    I. Hinterleitner and J. Mikeš, Geodesic Mappings and Einstein Spaces, arXiv:1201.2827v1 [math.DG].Google Scholar
  47. 47.
    S. Ishihara, “Holomorphically projective changes and their groups in an almost complex manifold,” Tohoku Math. J., II. Ser., 9, 273–297 (1957).CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    V. F. Kagan, Subprojective Space [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  49. 49.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. 1, 2, Interscience Publ. New York–London (1963, 1969).Google Scholar
  50. 50.
    al Lamy, J. Raad, J. Mikeš, and M. Škodová, “On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces,” Arch. Math. (Brno), 42 Suppl., 291–299 (2006).Google Scholar
  51. 51.
    T. Levi-Civita, “Sulle transformationi delle equazioni dinamiche,” Ann. Mat. Milano, 24, Ser. 2, 255–300 (1886).Google Scholar
  52. 52.
    J. Mikeš, Geodesic and holomorphically projective mappings of special Riemannian spaces [in Russian], Ph.D. thesis, Odessk. Univ., Odessa (1979).Google Scholar
  53. 53.
    J. Mikeš, “On geodesic mappings of Ricci 2-symmetric Riemanniand spaces,” Mat. Zametki, 28, No. 2, 313–317 (1980).MATHMathSciNetGoogle Scholar
  54. 54.
    J. Mikeš, “On geodesic mappings of Einstein spaces,” Mat. Zametki, 28, No. 6, 935–938 (1980).MATHMathSciNetGoogle Scholar
  55. 55.
    J. Mikeš, “F-Planar mappings and transformations,” in: Proc. Int. Conf. “Differential Geometry and Its Application,” August 24–30, Brno, 1986, Brno (1986), pp. 245–254.Google Scholar
  56. 56.
    J. Mikeš, “F-Planar mappings of spaces with affine connection,” Arch. Math., Brno, 27a, 53–56 (1991).Google Scholar
  57. 57.
    J. Mikeš, “On F-planar and f-planar mappings, transformations, and deformations,” in: Geometry of Generalized Spaces [in Russian], Penza (1992), pp. 60–65.Google Scholar
  58. 58.
    J. Mikeš, “On special F-planar mappings of spaces with affine connection,” Vestn. Mosk. Univ., Ser. Mat., 3, 18–24 (1994).Google Scholar
  59. 59.
    J. Mikeš, Geodesic, F-planar, holomorphically projective mappings of Riemannian spaces and spaces with affine connection [in Russian], D.Sci. thesis, Palacky Univ., Olomouc–Praha (1995).Google Scholar
  60. 60.
    J. Mikeš, “Geodesic mappings of affinely connected and Riemannian spaces,” J. Math. Sci., 78, No. 3, 311–333 (1996).CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    J. Mikeš, “Holomorphically projective mappings and their generalizations,” J. Math. Sci., 89, No. 3, 1334–1353 (1998).CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    J. Mikeš, “F-planar mappings to Riemannian spaces,” Proc. Int. Conf. “Invariant Methods in Geometry, Analysis, and Mathematical Physics,”, Vol. 2, All-Russian Institute for Scientific and Technical Information (VINITI), Moscow (2001), pp. 138–145.Google Scholar
  63. 63.
    J. Mikeš, S. Báscó, and V. Berezovskii, “Geodesic mappings of weakly Berwald spaces and Berwald spaces onto Riemannian spaces,” Int. J. Pure Appl. Math., 45, No. 3, 413–418 (2008).MATHMathSciNetGoogle Scholar
  64. 64.
    J. Mikeš and V. E. Berezovskii, Geodesic mappings of spaces with affine connection to Riemannian spaces, Deposited at the Ukrainian Institute for Scientific and Technical Information (UkrNIITI) 25.02.1985, No. 347, Kiev (1986).Google Scholar
  65. 65.
    J. Mikeš and V. Berezovskii, “Geodesic mappings of affinely connected spaces onto Riemannian spaces,” in: Proc. Colloq. “Differential Geometry and Its Applications,” Eger, Hungary, August 20–25, 1989, Comp. Colloq. Math. Soc. János Bolyai, 56, . North-Holland, Amsterdam (1992), pp. 491–494.Google Scholar
  66. 66.
    J. Mikeš and M. Chodorová, “On concircular and torse-forming vector fields on compact manifolds,” Acta Math. Acad. Paedogog. Nyhazi. (N.S.), 27 (2010).Google Scholar
  67. 67.
    J. Mikeš and I. Hinterleitner, “On fundamental equations of geodesic mappings and their applications,” J. Math. Sci., 174, No. 5, 537–554 (2011).CrossRefMATHGoogle Scholar
  68. 68.
    J. Mikeš, M. Jukl, and L. Juklova, “Some results on the traceless decomposition of tensors,” J. Math. Sci., 174, No. 5, 627–640 (2011).CrossRefMATHGoogle Scholar
  69. 69.
    J. Mikeš and L. Rachůnek, “T-Semi-symmetric spaces and concircular vector fields,” Rend. Circ. Mat. Palermo (2) Suppl., 69, 187–193 (2002).Google Scholar
  70. 70.
    J. Mikeš and N. S. Sinyukov, “On quasi-planar mappings of spaces with affine connection,” Izv. Vyssh. Ucheb. Zaved., Ser. Mat., 27, No. 1, 55–61 (1983).Google Scholar
  71. 71.
    J. Mikeš and M. Škodová, “Concircular vector fields on compact manifolds with affine connection,” Publ. RSME, 10, 302–307 (2007).Google Scholar
  72. 72.
    J. Mikeš, A. Vanžurová, and I. Hinterleitner, Geodesic Mappings and Some Generalizations, Publ. Palacky Univ., Olomouc (2009).MATHGoogle Scholar
  73. 73.
    A. P. Norden, Spaces with Affine Connection [in Russian], Nauka, Moscow (1976).Google Scholar
  74. 74.
    T. Otsuki and Y. Tashiro, “On curves in K¨ahlerian spaces,” Math. J. Okayama Univ., 4, 57–78 (1954).Google Scholar
  75. 75.
    A. Z. Petrov, Modelling of Physical Fields. Gravity and Relativity Theory [in Russian], Izd. Kazan Univ., Kazan (1968).Google Scholar
  76. 76.
    A. Z. Petrov, New Methods in the General Theory of Relativity [in Russian], Nauka, Moscow (1966).Google Scholar
  77. 77.
    M. Prvanović, “Holomorphically projective transformations in a locally product space,” Math. Balkanica (N.S.), 1, 195–213 (1971).MATHGoogle Scholar
  78. 78.
    L. Rachůnek and J. Mikeš, “On tensor fields semi-conjugated with torse-forming vector fields,” Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 44, 151–160 (2005).MATHMathSciNetGoogle Scholar
  79. 79.
    Ž. Radulović, J. Mikeš, and M. L. Gavril’chenko, Geodesic Mappings and Deformations of Riemannian Spaces [in Russian], Izd. Odessk. Univ., Odessa (1997).Google Scholar
  80. 80.
    V. S. Shadnyi, “Almost geodesic mappings of Riemannian spaces to spaces of constant curvatures,” Mat. Zametki, 25, No. 2, 293–296 (1979).MathSciNetGoogle Scholar
  81. 81.
    Ya. L. Shapiro, “Geodesic fields and projective systems of paths,” Mat. Sb., 36, 125–148 (1955).MathSciNetGoogle Scholar
  82. 82.
    M. Shiha, Geodesic and Holomorphically Projective Mappings of Parabolically Kählerian Spaces [in Russian], Ph.D. thesis, Moscow Pedagogical. Univ., Moscow (1992).Google Scholar
  83. 83.
    M. Shiha, “On the theory of holomorphically projective mappings of parabolically Kählerian spaces,” Proc. Conf. “Differential Geometry and Its Applications,” Opava, 1992, Math. Publ., Silesian Univ., Opava (1993), pp. 157–160.Google Scholar
  84. 84.
    M. Shiha and J. Mikeš, “On holomorphically projective, flat, parabolically Kählerian spaces,” Contemp. Geom. Related Topics. Čigoja Publ. Comp., 250, 467–474 (2006).Google Scholar
  85. 85.
    A. P. Shirokov, “Spaces over algebras and their applications,” J. Math. Sci., 108, No. 2, 232–248 (2002).CrossRefMATHMathSciNetGoogle Scholar
  86. 86.
    N. S. Sinyukov, “Almost geodesic mappings of affinely connected and Riemannian spaces,” Dokl. Akad. Nauk SSSR, 151, 781–782 (1963).MathSciNetGoogle Scholar
  87. 87.
    N. S. Sinyukov, “To the theory of geodesic mappings of Riemannian spaces,” Dokl. Akad. Nauk SSSR, 169, 770–772 (1966).MathSciNetGoogle Scholar
  88. 88.
    N. S. Sinyukov, “Almost geodesic mappings of spaces with affine connection and e-structures,” Mat. Zametki, 7, 449–459 (1970).MathSciNetGoogle Scholar
  89. 89.
    N. S. Sinyukov, “Infinitesimal almost geodesic transformations of spaces with affine connection and Riemannian spaces,” Ukr. Geom. Sb., 9, 86–95 (1970).MATHGoogle Scholar
  90. 90.
    N. S. Sinyukov, Theory of Geodesic Mappings of Riemannian Spaces and Their Generalizations [in Russian], Dr.Sci. thesis, Kiev (1971).Google Scholar
  91. 91.
    N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces [in Russian], Nauka, Moscow (1979).Google Scholar
  92. 92.
    N. S. Sinyukov, “Almost geodesic mappings of affinely connected Riemannian spaces,” J. Sov. Math., 25, No. 4, 1235–1249 (1984).CrossRefMATHGoogle Scholar
  93. 93.
    N. S. Sinyukov, Principles of the Theory of Almost Geodesic Mappings of Riemannian Spaces “in the whole,” Deposited at the All-Union Institute for Scientific and Technical Information (VINITI) No 562-91B, Moscow (1991).Google Scholar
  94. 94.
    N. S. Sinyukov, I. N. Kurbatova, and J.Mikeš, Holomorphically Projective Mappings of Kählerian Spaces [in Russian], Izd. Odessk. Univ., Odessa (1985).Google Scholar
  95. 95.
    N. S. Sinyukov and E. N. Sinyukova, “On holomorphically projective mappings of special Kählerian spaces,” Mat. Zametki, 36, No. 3, 417–423 (1984).MathSciNetGoogle Scholar
  96. 96.
    V. S. Sobchuk, “Intrinsic almost geodesic mappings,” Izv. Vyssh. Ucheb. Zaved., Ser. Mat., 324, No. 5, 62–64 (1989).MathSciNetGoogle Scholar
  97. 97.
    V. S. Sobchuk, “Almost geodesic mappings of Riemannian spaces to symmetric Riemannian spaces,” Mat. Zametki, 17, No. 5, 757–783 (1975).MATHMathSciNetGoogle Scholar
  98. 98.
    V. S. Sobchuk, J. Mikeš, and O. Pokorná, “On almost geodesic mappings π2 between semisymmetric Riemannian spaces,” Novi Sad J. Math., 29, No. 3, 309–312 (1999).MATHMathSciNetGoogle Scholar
  99. 99.
    A. S. Solodovnikov, “Projective transformations of Riemannian spaces,” Usp. Mat. Nauk, 11, No 4 (70), 45–116 (1956).MATHMathSciNetGoogle Scholar
  100. 100.
    M. S. Stanković, S. M. Minćić, and Lj. S. Velimirović, “On equitorsion holomorphically projective mappings of generalized Kählerian spaces,” Czechoslovac Math. J., 54, No. 3, 701–715 (2004).CrossRefMATHGoogle Scholar
  101. 101.
    M. S. Stanković, S. M. Minćić, and Lj. S. Velimirović, “On holomorphically projective mappings of generalized Kählerian spaces,” Mat. Vesnik, 54, Nos. 3–4, 195–202 (2002).MATHMathSciNetGoogle Scholar
  102. 102.
    M. S. Stanković, M. Lj. Zlatanović, and Lj. S. Velimirović, “Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind,” Czechoslovac Math. J., 60, No. 3, 635–653 (2010).CrossRefMATHGoogle Scholar
  103. 103.
    M. S. Stanković, M. Lj. Zlatanović, and Lj. S. Velimirović, “Equitorsion holomorphically projective mappings of generalized Kählerian space of the second kind,” Int. Electron. J. Geom., 3, No. 2, 26–39 (2010).MATHMathSciNetGoogle Scholar
  104. 104.
    M. Škodová, J. Mikeš, and O. Pokorná, “On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces,” Rend. Circ. Mat. Palermo (2), 75, 309– 316 (2005).Google Scholar
  105. 105.
    Y. Tashiro, “On a holomorphically projective correspondence in an almost complex space,” Math. J. Okayama Univ., 6, 147–152 (1957).MATHMathSciNetGoogle Scholar
  106. 106.
    H. Vavříková, J. Mikeš, O. Pokorná, and G. Starko, “On fundamental equations of almost geodesic mappings of type π2(e),” Izv. Vyssh. Ucheb. Zaved., Ser. Mat., 1, 10–15 (2007).Google Scholar
  107. 107.
    D. V. Vedenyapin, “On some (n−2)-projective spaces,” Nauch. Dokl. Vyssh. Shkoly, Fiz.-Mat., 8, 119–125 (1958).Google Scholar
  108. 108.
    G. Vrặnceanu, Le,cons de geometrie differentielle, Acad. Rep. Pop. Roumaine, Bucharest (1957).Google Scholar
  109. 109.
    N. V. Yablonskaya, Almost geodesic mappings of affinely connected spaces with torsion, Deposited at the All-Union Institute for Scientific and Technical Information (VINITI) 19.06.1979, No. 2190–79, Moscow (1979).Google Scholar
  110. 110.
    N. V. Yablonskaya, Invariant geometric objects of almost geodesic mappings π2 of general spaces with affine connection, Deposited at the All-Union Institute for Scientific and Technical Information (VINITI) 12.02.1980, No. 543–80, Moscow (1980).Google Scholar
  111. 111.
    N. V. Yablonskaya, “On some classes of almost geodesic mappings of general spaces with affine connection,” Ukr. Geom. Sb., 27, 120–124 (1984).MATHMathSciNetGoogle Scholar
  112. 112.
    N. V. Yablonskaya, “On special groups of almost geodesic transformations of spaces with affine connection,” Izv. Vyssh. Ucheb. Zaved., Ser. Mat., 1, 78–80 (1986).MathSciNetGoogle Scholar
  113. 113.
    K. Yano, Differential Geometry of Complex and Almost Complex Spaces, Pergamon Press (1965).Google Scholar
  114. 114.
    K. Yano, “Concircular geometry, I,” Proc. Imp. Acad. Jpn., 16, 195–200 (1940).CrossRefGoogle Scholar
  115. 115.
    K. Yano, “Concircular geometry, II,” Proc. Imp. Acad. Jpn., 16, 345–360 (1940).Google Scholar
  116. 116.
    K. Yano, “Concircular geometry, III,” Proc. Imp. Acad. Jpn., 16, 442–448 (1940).CrossRefMATHGoogle Scholar
  117. 117.
    K. Yano, “Concircular geometry, IV,” Proc. Imp. Acad. Jpn., 16, 505–511 (1940).CrossRefMATHGoogle Scholar
  118. 118.
    K. Yano, “Concircular geometry, V,” Proc. Imp. Acad. Jpn., 18, 446–451 (1942).CrossRefMATHGoogle Scholar
  119. 119.
    K. Yano, “On the torse-forming directions in Riemannian spaces,” Proc. Imp. Acad. Tokyo, 20, 340–345 (1944).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Uman National University of HorticultureUmanUkraine
  2. 2.Palacky UniversityOlomoucCzech Republic

Personalised recommendations