Skip to main content
Log in

Estimates for the Concentration Functions in the Littlewood–Offord Problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Let X,X1, . . . , Xn be independent, identically distributed random variables. In this paper, we study the behavior of concentration functions of the weighted sums \( {\displaystyle \sum_{k=1}^n{a}_k{X}_k} \) with respect to the arithmetic structure of coefficients ak. Such concentration results recently became important in connection with the study of singular values of random matrices. In this paper, we formulate and prove some refinements of a result of Vershynin (2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. V. Arak, “On the convergence rate in Kolmogorov’s uniform limit theorem. I,” Teor. Veroyatn. Primen., 26, 225–245 (1981).

    MATH  MathSciNet  Google Scholar 

  2. T. V. Arak and A. Yu. Zaitsev, “Uniform limit theorems for sums of independent random variables,” Proc. Steklov Inst. Math., 174, 1–216 (1988).

    MathSciNet  Google Scholar 

  3. J. Bretagnolle, “Sur l’inégalité de concentration de Doeblin–Lévy, Rogozin-Kesten,” in: Parametric and Semiparametric Models With Applications to Reliability, Survival Analysis, and Quality of Life, Stat. Ind. Technol., Birkhäuser, Boston, MA (2004), pp. 533–551.

  4. Yu. S. Eliseeva, “Multivariate estimates for the concentration functions of weighted sums of independent, identically distributed random variables,” Zap. Nauchn. Semin. POMI, 412, 121–137 (2013).

    Google Scholar 

  5. Yu. S. Eliseeva and A. Yu. Zaitsev, “Estimates for the concentration functions of weighted sums of independent random variables,” Teor. Veroyatn. Primen., 57, 768–777 (2012).

    Article  Google Scholar 

  6. Yu. S. Eliseeva, F. Götze, and A. Yu. Zaitsev, “Estimates for the concentration functions in the Littlewood–Offord problem,” arXiv:1203.6763 (2012).

  7. P. Erdös, “On a lemma of Littlewood and Offord,” Bull. Amer. Math. Soc., 51, 898–902 (1945).

    Article  MATH  MathSciNet  Google Scholar 

  8. C.-G. Esséen, “On the Kolmogorov–Rogozin inequality for the concentration function,” Z. Wahrsch. Verw. Geb., 5, 210–216 (1966).

    Article  MATH  Google Scholar 

  9. C.-G. Esséen, “On the concentration function of a sum of independent random variables,” Z. Wahrsch. Verw. Geb., 9, 290–308 (1968).

    Article  MATH  Google Scholar 

  10. O. Friedland and S. Sodin, “Bounds on the concentration function in terms of Diophantine approximation,” C. R. Math. Acad. Sci. Paris, 345, 513–518 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Götze and A. Yu. Zaitsev, “Estimates for the rapid decay of concentration functions of n-fold convolutions,” J. Theor. Probab., 11, 715–731 (1998).

    Article  MATH  Google Scholar 

  12. F. Götze and A. Yu. Zaitsev, “A multiplicative inequality for concentration functions of n-fold convolutions,” in: High Dimensional Probability, II (Seattle, WA, 1999), Progr. Probab., 47, Birkh¨auser, Boston, MA (2000), pp. 39–47.

  13. G. Halász, “Estimates for the concentration function of combinatorial number theory and probability,” Periodica Mathematica Hungarica, 8, 197–211 (1977).

    Article  MathSciNet  Google Scholar 

  14. W. Hengartner and R. Theodorescu, Concentration Functions, Academic Press, New York (1973).

    MATH  Google Scholar 

  15. H. Kesten, “A sharper form of the Doeblin–Levy–Kolmogorov–Rogozin inequality for concentration functions,” Math. Scand., 25, 133–144 (1969).

    MATH  MathSciNet  Google Scholar 

  16. J. E. Littlewood and A. C. Offord, “On the number of real roots of a random algebraic equation,” Mat. Sb., 12, 277–286 (1943).

    MathSciNet  Google Scholar 

  17. A. L. Miroshnikov and B. A. Rogozin, “Inequalities for the concentration functions,” Teor. Veroyatn. Primen., 25, 178–183 (1980).

    MATH  MathSciNet  Google Scholar 

  18. S. V. Nagaev and S. S. Hodzhabagyan, “On the estimate for the concentration function of sums of independent random variables,” Teor. Veroyatn. Primen., 41, 655–665 (1996).

    Article  Google Scholar 

  19. H. Nguyen and V. Vu, “Optimal inverse Littlewood–Offord theorems,” Adv. Math., 226, 5298–5319 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  20. V. V. Petrov, Sums of Independent Random Variables [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  21. B. A. Rogozin, “On the increase of dispersion of sums of independent random variables,” Teor. Veroyatn. Primen., 6, 106–108 (1961).

    MathSciNet  Google Scholar 

  22. M. Rudelson and R. Vershynin, “The Littlewood–Offord problem and invertibility of random matrices,” Adv. Math., 218, 600–633 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Rudelson and R. Vershynin, “The smallest singular value of a random rectangular matrix,” Comm. Pure Appl. Math., 62, 1707–1739 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Tao and V. Vu, “Inverse Littlewood–Offord theorems and the condition number of random discrete matrices,” Ann. Math., 169, 595–632 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  25. T. Tao and V. Vu, “From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices,” Bull. Amer. Math. Soc., 46, 377–396 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Vershynin, “Invertibility of symmetric random matrices,” Random Structures and Algorithms, 44, 135–182 (2014), arXiv:1102.0300.

  27. A. Yu. Zaitsev, “Use of the concentration function for estimating the uniform distance,” Zap. Nauchn. Semin. LOMI, 119, 93–107 (1982).

    MATH  Google Scholar 

  28. A. Yu. Zaitsev, “On the rate of decay of concentration functions of n-fold convolutions of probability distributions,” Vestn. St.Petersb. Univ., Ser. Mat., Mech., Astron., 44, 110–114 (2011).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Eliseeva.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 420, 2013, pp. 50–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliseeva, Y.S., Götze, F. & Zaitsev, A.Y. Estimates for the Concentration Functions in the Littlewood–Offord Problem. J Math Sci 206, 146–158 (2015). https://doi.org/10.1007/s10958-015-2299-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2299-3

Keywords

Navigation