Advertisement

Journal of Mathematical Sciences

, Volume 203, Issue 4, pp 605–620 | Cite as

Singular Points and First Integrals of Holomorphic Dynamical Systems

  • E. P. Volokitin
  • V. M. Cheresiz
Article

We study the complex system ż = F(z) in a neighborhood of a singular point that is a multiple zero or a pole of the function F(z) on the phase plane. We consider trajectories at infinity and construct first integrals of polynomial systems by the Darboux method.

Keywords

■■■  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gregor, “Dynamické systémy s Regulární Pravou Stranou. I” [in Czech], Pokroky Mat. Fyz. Astron. 3, No. 2, 153–160 (1958).Google Scholar
  2. 2.
    N. A. Lukashevich, “Isochronicity of center for certain systems of differential equations” [in Russian], Differ. Uravn. 1, No. 3, 295–302 (1965); English tranls.: Differ. Equations 1, 220-226 (1966).Google Scholar
  3. 3.
    C. J. Christopher and J. Devlin, “Isochronous centers in planar polynomial systems,” SIAM J. Math. Anal. 28, No. 1, 162–177 (1997).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    N. I. Gavrilov, Methods of the Theory of Ordinary Differential Equations [in Russian], Vyssh. Shkola, Moscow (1962).Google Scholar
  5. 5.
    A. T. Fomenko and A. S. Mishchenko, A Short Course in Differential Geometry and Topology [in Russian], Moscow State Univ. Press, Moscow (1980); English transl.: Cambridge Sci, Publ., Cambridge (2009).Google Scholar
  6. 6.
    M. A. Krasnosel’skiy, A. I. Perov, A. I. Povolotskiy, and P. P. Zabreiko, Plane Vector Fields [in Russian], Fizmatgiz, Moscow (1963); English transl.: Academic Press, New York etc. (1966).Google Scholar
  7. 7.
    J. Llibre and J. C. Medrado, “Darboux integrability and reversible quadratic vector fields,” Rocky Mt. J. Math. 35, No. 6, 1999–2057 (2005).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    B. Coll, A. Ferragut, and Llibre , “Phase portraits of the quadratic systems with a polynomial inverse integrating factor,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 19, No. 3, 765–783 (2009).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    A. A. Andronov, E. A. Leontovich, and I. I. Gordon, Theory of Bifurcations of Dynamic Systems on Plane [in Russian], Nauka, Moscow (1967).Google Scholar
  10. 10.
    P. Mardešić and B. Toni, “Linearization of isochronous centers,” J. Differ. Equations 121, No. 1, 67–108 (1995).CrossRefMATHGoogle Scholar
  11. 11.
    G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Springer, Berlin (1998).Google Scholar
  12. 12.
    E. P. Volokitin and V. V. Ivanov, “Isochronicity and commutation of polynomial vector fields” [in Russian], Sib. Mat. Zh. 40, No. 1, 30–48 (1999); English transl.: Sib. Math. J. 40, No. 1, 23–38 (1999).Google Scholar
  13. 13.
    M. Villarini, “Regularity properties of the period function near a center of a planar vector field,” Nonlinear Anal. 19, No. 8, 787–803 (1992).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    J. G. Darboux, “Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges),” Bull. Sci. Math. 32, 60–96, 123–144, 151–200 (1878).Google Scholar
  15. 15.
    C. Christopher, “Invariant algebraic curves and conditions for a centre,” Proc. R. Soc. Edinb. Sect. A. 124, 1209–1229 (1994).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    I. A. Garcia and M. Grau, “A survey on the inverse integrating factor,” Qual. Theory Dyn. Syst. 9, No. 1-2, 115–166 (2010).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations