Journal of Mathematical Sciences

, Volume 203, Issue 4, pp 558–569 | Cite as

Penalty Method for Optimal Control Problem with Phase Constraint

  • K. S. Musabekov

We study control problems with phase constraint by replacing the phase constraint with a penalty function in the target functional. We establish the existence of an optimal control and prove the convergence of phase variables and controls as the penalty coefficient unboundedly increases. Bibliography: 12 titles.


Optimal Process Optimal Control Problem Penalty Function Penalty Method Tubular Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Pontryagin, V. G. Boltyanskij, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Nauka, Moscow (1976); English transl.: Interscience Publishers, New York etc. (1962).MATHGoogle Scholar
  2. 2.
    A. Ya. Dubovitskii and A. A. Milyutin, “Extremum problems under constraints” [in Russian], Zh. Vychisl. Mat. Mat. Fiz. 5, No. 3, 395–453 (1965).Google Scholar
  3. 3.
    V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, SIAM, Philadelphia, PA (1990).CrossRefMATHGoogle Scholar
  4. 4.
    K. Grossman and A. A. Kaplan, Nonlinear Programming Based on Unconstrained Minimization [in Russian], Nauka, Novosibirsk (1981).Google Scholar
  5. 5.
    F. P. Vasil’ev, Numerical Methods for Solving Extremal Problems [in Russian], Nauka, Moscow (1980).Google Scholar
  6. 6.
    J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin etc. (1971).CrossRefMATHGoogle Scholar
  7. 7.
    F. P. Vasil’ev, Methods for Solving Extremal Problems [in Russian], Nauka, Moscow (1981).Google Scholar
  8. 8.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967); English transl.: Am. Math. Soc., Providence, RI (1968).Google Scholar
  9. 9.
    V. S. Belonosov and T. I. Zelenyak, Nonlocal Problems in the Theory of Quasilinear Parabolic Equations [in Russian], Novosibirsk (1975).Google Scholar
  10. 10.
    K. S. Musabekov, “Existence of optimal control for regularized problem with phase constraint” [in Russian], Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 10, No. 2, 54–67 (2010); English transl.: J. Math. Sci., New York 186, No. 3, 466–477 (2012).CrossRefMathSciNetGoogle Scholar
  11. 11.
    F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover Publ., New York (1990).MATHGoogle Scholar
  12. 12.
    C. Georgakis, R. Aris, and N. R. Amundson, “Studies in the control of tubular reactors,” Chem. Eng. Sci. 32, No. 11, 1359–1387 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations