Advertisement

Journal of Mathematical Sciences

, Volume 203, Issue 3, pp 396–408 | Cite as

Asymptotic analysis of mathematical expectation of the total energy of a harmonic oscillator perturbed by the “shot-noise”-type process

  • O.D. Stetsyuk
Article

We study the behavior, as t → ∞, of the mathematical expectation of the total energy of a harmonic oscillator without friction perturbed by the “shot noise”-type process.

Keywords

■■■  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. É. Él’sgol’ts, Differential Equations and Variational Calculus [in Russian], Nauka, Moscow (1965).Google Scholar
  2. 2.
    H. L. Kulinich, D. Yu. Kurovs’kyi, and D. V. Petrusenko, “Asymptotic analysis of the mathematical expectation of the total energy of a harmonic oscillator under random pulse perturbation,” Nelin. Kolyvannya, 12, No. 3, 299–306 (2009); English translation: Nonlin. Oscillations, 12, No. 3, 305–313 (2009).Google Scholar
  3. 3.
    M. T. Dyvnych, D. Yu. Kurovs’kyi, and A. V. Ershov, “Asymptotic analysis of the mathematical expectation of the total energy of a random harmonic oscillator,” Visn. Kyiv. Univ., Ser. Mat. Mekh., No. 3, 104–112 (2005).Google Scholar
  4. 4.
    G. L. Kulinich, “On the limiting behaviors of a harmonic oscillator with random external disturbance,” Y.A. M.S.A., 8, 265–274 (1995).MATHMathSciNetGoogle Scholar
  5. 5.
    G. M. Fikhtengol’ts, Foundations of Mathematical Analysis [in Russian], Vol. 2, Gostekhteorizdat, Moscow (1956).Google Scholar
  6. 6.
    A. A. Andronov, A. A. Vitt, and S. É. Khaikin, Theory of Oscillations [in Russian], Fizmatlit, Moscow (1959).Google Scholar
  7. 7.
    V. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations [in Russian], Naukova Dumka, Kiev (1968).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Shevchenko Kyiv National UniversityKyivUkraine

Personalised recommendations