Advertisement

Journal of Mathematical Sciences

, Volume 203, Issue 3, pp 306–321 | Cite as

Boundary-Value Problems for Systems of Integrodifferential Equations

  • O. A. Boichuk
  • I. A. Holovats’ka
Article

We establish necessary and sufficient conditions for the existence of solutions of a weakly nonlinear boundary-value problem for a system of integrodifferential equations. By the methods of the theory of pseudoinverse matrices, we obtain necessary and sufficient conditions for the existence of solutions of systems of linear integrodifferential equations with impulsive action at fixed times.

Keywords

Vector Function Integrodifferential Equation Impulsive Action Dimensional Column Vector Penrose Pseudoinverse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Samoilenko, A. A. Boichuk, and S. A. Krivosheya, “Boundary-value problems for linear systems of integrodifferential equations with degenerate kernel,” Ukr. Mat. Zh., 48, No. 11, 1576–1579 (1996); English translation: Ukr. Math. J., 48, No. 11, 1785–1789 (1996).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Utrecht (2004).CrossRefMATHGoogle Scholar
  3. 3.
    I. A. Holovats’ka, “Weakly perturbed systems of linear integrodifferential equations,” Nelin. Kolyvannya, 15, No. 2, 151–164 (2012).Google Scholar
  4. 4.
    I. A. Holovats’ka, “Weakly nonlinear systems of integrodifferential equations,” Visn. Kyiv. Univ., Ser. Fiz.-Mat. Nauk., 1, 71–74 (2013).Google Scholar
  5. 5.
    I. Golovatska, “Weakly perturbed boundary-value problems of integrodifferential equations,” Tatra Mt. Math. Publ., 54, 61–71 (2013).MATHMathSciNetGoogle Scholar
  6. 6.
    A. Boichuk, J. Diblik, D. Khusainov, and M. Ruzickova, “Boundary-value problems for weakly nonlinear delay differential systems,” Abstr. Appl. Anal., 2011 (2011); Article ID 631412.Google Scholar
  7. 7.
    L. A. Lyusternik and V. I. Sobolev, A Brief Course in Functional Analysis. A Textbook [in Russian], Nauka, Moscow (1982).Google Scholar
  8. 8.
    A. A. Boichuk, V. F. Zhuravlev, and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1995).Google Scholar
  9. 9.
    I. G. Malkin, Some Problems in the Theory of Nonlinear Oscillations [in Russian], Gostekhizdat, Moscow (1956).Google Scholar
  10. 10.
    E. A. Grebenikov and Yu. A. Ryabov, Constructive Methods for the Analysis of Nonlinear Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  11. 11.
    M. A. Krasnosel’skii, G. M. Vainikko, P. P. Zabreiko, et al., Approximate Solution of Operator Equations [in Russian], Nauka, Moscow (1968).Google Scholar
  12. 12.
    O. A. Boichuk and I. A. Holovats’ka, “Weakly nonlinear systems of integrodifferential equations,” Nelin. Kolyvannya, 16, No. 3, 314–321 (2013).Google Scholar
  13. 13.
    A. Zettl, “Adjoint and self-adjoint BVP’s with interface conditions,” SIAM J. Appl. Math., 16, No. 4, 851–859 (1968).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    F. R. Gantmakher, Theory of Matrices [in Russian], Nauka, Moscow (1988).Google Scholar
  15. 15.
    A. A. Boichuk and A. A. Pokutnyi, “Bounded solutions of linear differential equations in a Banach space,” Nelin. Kolyvannya, 9, No. 1, 3–14 (2006); English translation: Nonlin. Oscillations, 9, No. 1, 1–12 (2006).CrossRefMATHGoogle Scholar
  16. 16.
    A. Boichuk, J. Diblik, D. Khusainov, and M. Ruzickova, “Boundary-value problems for weakly nonlinear delay differential systems,” Abstr. Appl. Anal., Article ID 631412 (2011).Google Scholar
  17. 17.
    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations [in Russian], Vyshcha Shkola, Kiev (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations