Skip to main content
Log in

Localized Solutions of a Piecewise Linear Model of the Stationary Swift–Hohenberg Equation on the Line and on the Plane

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper we study a simplified model of the stationary Swift–Hohenberg equation, where the cubic nonlinearity is replaced by a piecewise linear function with similar properties. The main goal is to prove the existence of so-called localized solutions of this equation, i.e., solutions decaying to a homogeneous zero state with unbounded increase of the space variable. The following two cases of the space variable are considered: one-dimensional (on the whole line) and two-dimensional; in the latter case, radially symmetric solutions are studied. The existence of such solutions and increase of their number with change in the equation parameters are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Abramowitz and E. Stegan, Guidebook in Special Functions, Nauka, Moscow (1979).

    Google Scholar 

  2. A. A. Andronov, A.A. Vitt, and S.E. Haikin, Theory of Oscillations [in Russian], 2d ed., Fizmatgiz, Moscow (1959).

    Google Scholar 

  3. I. Aranson, K. Gorshkov, A. Lomov, and M. Rabinovich, “Stable particle-like solutions of multidimensional nonlinear fields,” Phys. Rev. D., 43, 435–453 (1990).

    MathSciNet  MATH  Google Scholar 

  4. V. I. Arnol’d and A.B. Givental, “Symplectic geometry,” Sovrem. Probl. Mat. Fundam. Napravl., 4, 7–178 (1985).

    Google Scholar 

  5. M. Beck, J. Knobloch, D. Lloyd, B. Sandstede, and Th. Wagenknecht, “Snakes, ladders, and isolas of localised patterns,” SIAM J. Math. Anal., 41, No. 3, 936–972 (2008).

    Article  MathSciNet  Google Scholar 

  6. L. Belyakov, L. Glebsky, and L. Lerman, “Abundance of stable stationary localized solutions to the generalized Swift–Hohenberg equation,” Comput. Math. Appl., 34, No. 2–4, 253–266 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Burke and E. Knobloch, “Localized states in the generalized Swift–Hohenberg equation,” Phys. Rev. E, 73, 056211 (2006).

    Article  MathSciNet  Google Scholar 

  8. J. Burke and E. Knobloch, “Multipulse states in the Swift–Hohenberg equation,” Discrete Contin. Dyn. Syst., suppl., 109–117 (2009).

  9. R. L. Devaney, “Homoclinic orbits in Hamiltonian systems,” J. Differ. Equ., 21, 431–439 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Doelman, B. Sandstede, A. Scheel, and G. Schneider, “Propagation of hexagonal patterns near onset,” Eur. J. Appl. Math., 14, 85–110 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. F. Hilali, S. Métens, P. Borckmans, and G. Dewel, “Pattern selection in the generalized Swift–Hohenberg model,” Phys. Rev. E., 51, 2046–2052 (1995).

    Article  Google Scholar 

  12. C. Jones and N. Küpper, “On the infinitely many solutions of a semilinear elliptic equation,” SIAM J. Math. Anal., 17, No. 4, 803–835 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. E. Kulagin, L. M. Lerman, and T. G. Shmakova, “On Radial Solutions of the Swift–Hohenberg Equation,” Proc. Steklov Inst. Math., 261, 183–203 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Lega, J. V. Moloney, and A. S. Newell, “Swift–Hohenberg equation for lasers,” Phys. Rev. Lett., 73, 2978–2981 (1994).

    Article  Google Scholar 

  15. L. Lerman, “Dynamical phenomena near a saddle-focus homoclinic connection in a Hamiltonian system,” J. Stat. Phys., 101, No. 1-2, 357-372 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Lerman and N. Slinyakova, “On the dynamics of a piecewise linear model of the Swift–Hohenberg equation,” Nelinejn. Dinam., 5, 1–15 (2009).

    Google Scholar 

  17. D. Lloyd and B. Sandstede, “Localized radial patterns in the Swift–Hohenberg equation,” Nonlinearity, 22, No. 2, 485–524 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. L. A. Peletier and J.A. Rodriguez, “Homoclinic orbits to a saddle-center in a fourth-order differential equation,” J. Differ. Equ., 203, 185–215 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Swift and P. S. Hohenberg, “Hydrodynamic fluctuations at the convective instability,” Phys. Rev. A, 15, 319–328 (1977).

    Article  Google Scholar 

  20. M. Tlidi, M. Georgiou, and P. Mandel, “Transverse patterns in nascent optical bistability,” Phys. Rev., 48, 4605–4609 (1993).

    Article  Google Scholar 

  21. E. Yanke, F. Emde, and F. Lesh, Special Functions: Formulas, Graphs, Tables [in Russian], Nauka, Moscow (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Kulagin.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 47, Proceedings of the Sixth International Conference on Differential and Functional Differential Equations and International Workshop “Spatio-Temporal Dynamical Systems” (Moscow, Russia, 14–21 August, 2011). Part 3, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulagin, N.E., Lerman, L.M. Localized Solutions of a Piecewise Linear Model of the Stationary Swift–Hohenberg Equation on the Line and on the Plane. J Math Sci 202, 684–702 (2014). https://doi.org/10.1007/s10958-014-2072-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-2072-z

Keywords

Navigation