Advertisement

Journal of Mathematical Sciences

, Volume 202, Issue 3, pp 333–345 | Cite as

Two-Term Partial Tilting Complexes Over Brauer Tree Algebras

  • M. A. Antipov
  • A. O. Zvonareva
Article

In this paper, all indecomposable two-term partial tilting complexes over a Brauer tree algebra with multiplicity 1 are described, using a criterion for a minimal projective presentation of a module to be a partial tilting complex. As an application, all two-term tilting complexes over a Brauer star algebra are described and their endomorphism rings are computed.

Keywords

Direct Summand Edge Incident Projective Module Endomorphism Ring Composition Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Rouquier and A. Zimmermann, “Picard groups for derived module categories,” Proc. London Math. Soc. (3), 87, No. 1, 197–225 (2003).Google Scholar
  2. 2.
    I. Muchtadi-Alamsyah, “Braid action on derived category of Nakayama algebras,” Comm. Algebra, 36, No. 7, 2544–2569 (2008).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    H. Abe and M. Hoshino, “On derived equivalences for self-injective algebras,” Comm. Algebra, 34, No. 12, 4441–4452 (2006).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    M. Schaps and E. Zakay-Illouz, “Combinatorial partial tilting complexes for the Brauer star algebras,” in: Proceeding of the International Conference on Representations of Algebra, Sao Paulo (2001), pp. 187–208.Google Scholar
  5. 5.
    M. Schaps and E. Zakay-Illouz, “Pointed Brauer trees,” J. Algebra, 246, No. 2, 647–672 (2001).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    J. Rickard, “Morita theory for derived categories,” J. London Math. Soc., 39, No. 2, 436–456 (1989).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    I. M. Gelfand and V. A. Ponomarev, “Indecomposable representations of the Lorentz group,” Russian Math. Surv., 23, No. 2(140), 3–59 (1968).Google Scholar
  8. 8.
    B. Wald and J. Waschbüsch, “Tame biserial algebras,” J. Algebra, 95, 480–500 (1985).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    M. A. Antipov and A. I. Generalov, “Finite generation of the Yoneda algebra of a symmetric special biserial algebra,” Algebra Analiz, 17, No. 3, 1–23 (2005).MathSciNetGoogle Scholar
  10. 10.
    J. L. Alperin, Local Representation Theory, Cambridge Studies Adv. Math., 11, Cambridge University Press (1986).Google Scholar
  11. 11.
    J. Rickard, “Derived categories and stable equivalence,” J. Pure Appl. Algebra, 61, 303–317 (1989).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    P. Gabriel and C. Riedtmann, “Group representations without groups,” Comment. Math. Helv., 54, 240–287 (1979).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    M. C. R. Butler and C. M. Ringel, “Auslander–Reiten sequences with few middle terms and applications to string algebras,” Comm. Algebra, 15, Nos. 1–2, 145–179 (1987).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    D. Happel, “Auslander–Reiten triangles in derived categories of finite-dimensional algebras,” Proc. Amer. Math. Soc., 112, 641–648 (1991).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    D. Happel, Triangulated Categories in the Representation of Finite-Dimensional Algebras, Cambridge University Press (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations