Journal of Mathematical Sciences

, Volume 200, Issue 3, pp 389–398 | Cite as

A criterion of unconditional basis property for the families of vector exponentials

  • Mariya Georgievna Volkova
  • Elena Ivanovna Olefir


A criterion of unconditional basis property for the families of vector-functions \( {E}_k(t):={c}_k{e}^{i{\uplambda}_k t},{c}_k\in {\mathbb{C}}^n,{\uplambda}_k\in \Lambda \) in the Cartesian product of n spaces L 2(0, a) without the restrictive condition inf k Im λ k > −∞ is proved.


Unconditional bases nonself-adjoint operators vector exponentials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Z. Arov and H. Dym, J-Contractive Matrix Valued Functions and Related Topics, Cambridge Univ. Press, Cambridge, 2008.CrossRefMATHGoogle Scholar
  2. 2.
    S. A. Avdonin and S. A. Ivanov, Families of Exponentials, Cambridge Univ. Press, Cambridge, 1995.MATHGoogle Scholar
  3. 3.
    I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators, Amer. Math. Soc., Providence, RI, 1969.Google Scholar
  4. 4.
    G. M. Gubreev, “The spectral theory of regular quasiexponentials and regular B-representable vectorfunctions,” Alg. Analiz, 12, No. 6, 1–97 (2000).MathSciNetGoogle Scholar
  5. 5.
    G. M. Gubreev, “Mittag-Leffler regular kernels and the spectral expansion of a class of nonself-adjoint operators,” Izv. RAN, 69, No. 1, 17–60 (2005).CrossRefMathSciNetGoogle Scholar
  6. 6.
    G. M. Gubreev, M. V. Dolgopolova, and S. I. Nedobachiy, “A spectral decomposition in one class of nonselfajoint operators,” Meth. of Func. Anal. and Topol., 16, No. 2, 140–157 (2010).MATHMathSciNetGoogle Scholar
  7. 7.
    G. M. Gubreev and Yu. D. Latushkin, “The functional models of nonself-adjoint operators, strongly continuous semigroups, and Muckenhaupt’s matrix weights,” Izv. RAN, Ser. Mat., 75, No. 2, 69–126 (2011).CrossRefMathSciNetGoogle Scholar
  8. 8.
    G. M. Gubreev and E. I. Olefir, “The unconditional basis property of some families of functions, Muckenhaupt’s matrix condition, and Carleson series in the spectrum,” Zap. Nauch. Semin. POMI, 262, 90–126 (1999).Google Scholar
  9. 9.
    N. K. Nikol’skii, Lectures on the Shift Operator [in Russian], Nauka, Moscow, 1980.Google Scholar
  10. 10.
    S. R. Treil, “A spatially compact system of eigenvectors forms a Riesz basis if it is uniformly minimal,” Dokl. AN SSSR, 288, No. 2, 308–312 (1986).MathSciNetGoogle Scholar
  11. 11.
    S. Treil and A. Volberg, “Wavelets and the angle between past and future,” J. Funct. Anal., 143, No. 2, 269–301 (1997).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mariya Georgievna Volkova
    • 1
  • Elena Ivanovna Olefir
    • 1
  1. 1.K. D. Ushinskii South-Ukrainian National Pedagogical UniversityOdessaUkraine

Personalised recommendations