Journal of Mathematical Sciences

, Volume 200, Issue 1, pp 26–45 | Cite as

Spectral Decomposition of Cyclic Operators in Discrete Harmonic Analysis

  • M. S. Bespalov


For the operators of the discrete Fourier transform, the discrete Vilenkin–Christenson transform, and all linear transpositions of the discrete Walsh transform, we obtain their spectral decompositions and calculate the dimensions of eigenspaces. For complex operators, namely, the discrete Fourier transform and the Vilenkin–Christenson transform, we obtain real projectors on eigenspaces. For the discrete Walsh transform, we consider in detail the Paley and Walsh orderings and a new ordering in which the matrices of operators are symmetric. For operators of linear transpositions of the discrete Walsh transforms with nonsymmetric matrices, we obtain a spectral decomposition with complex projectors on eigenspaces. We also present the Parseval frame for eigenspaces of the discrete Walsh transform.


Discrete Fourier Transform Digital Signal Processing Cyclic Operator Matrix Versus Spectral Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    G. I. Arkhipov, V. A. Sadovnichi, and V. N. Chubarikov, Lectures in Mathematical Analysis [in Russian], Drofa, Moscow (2004).Google Scholar
  3. 3.
    M. S. Bespalov, On operators of multiplicative Fourier transforms [in Russian], Preprint No. 5826-83, All-Union Institute for Scientific and Technical Information (VINITI), Moscow (1983).Google Scholar
  4. 4.
    M. S. Bespalov, “Operators of the multiplicative Fourier transform,” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 526, No. 3, 9–23 (2006).MathSciNetGoogle Scholar
  5. 5.
    M. S. Bespalov, “Computational algorithms based on the Schur representation,” J. Math. Sci., 147, No. 1, 6416–6424 (2007).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    H. E. Christenson, “A class of generalized Walsh functions,” Pac. J. Math., 5, No. 1, 17–32 (1955).CrossRefGoogle Scholar
  7. 7.
    I. Daubechies, Ten Lectures on Wavelets, SIAM (1992).Google Scholar
  8. 8.
    A. V. Efimov, A. S. Pospelov, and S. V. Umnyashkin, “Some properties of multiplicative systems used in the digital signal processing,” Tr. Mat. Inst. Steklova, 219, 137–182 (1997).MathSciNetGoogle Scholar
  9. 9.
    N. J. Fine, “The generalized Walsh functions,” Trans. Am. Math. Soc., 69, 66–77 (1950).CrossRefMATHGoogle Scholar
  10. 10.
    B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Walsh Series and Walsh Transforms. Theory and Applications, Kluwer Academic (1991).Google Scholar
  11. 11.
    J. Hadamard, “Resolution d’une question relative aux determinants,” Bull. Sci. Math., Ser. 2, 17, 240–246 (1893).Google Scholar
  12. 12.
    J. H. McClellan and C. M. Rader, Number Theory in Digital Signal Processing, Prentice-Hall, Inc. Englewood Cliffs, New Jersey (1983).MATHGoogle Scholar
  13. 13.
    J. H. McClellan and T. W. Parks, “Eigenvalues and eigenvectors of the discrete Fourier transformation,” IEEE Trans. Audio Electroacoust., 20, No. 1, 66–74 (1972).CrossRefMathSciNetGoogle Scholar
  14. 14.
    J. Pal, “The eigenfunctions of the Walsh–Fourier transform,” in: Proc. Int. Conf. Approximation and Functions Spaces, Gdansk, 1979, (1981), pp. 553–557.Google Scholar
  15. 15.
    B. Rader and C. M. Gold, Digital Processing of Signals, McGraw Hill (1969).Google Scholar
  16. 16.
    F. Riesz and B. Szőkefalvi-Nagy, Leçons d’Analyse Fonctionnelle, Akad. Kiado, Budapest (1953).MATHGoogle Scholar
  17. 17.
    F. Schipp, W. R. Wade, P. Simon, and J. Pal, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Akad. Kiado, Budapest (1990).MATHGoogle Scholar
  18. 18.
    A. B. Sergienko, Digital Signal Processing [in Russian], Piter, Saint Petersburg (2003).Google Scholar
  19. 19.
    G. Stampli, “Sums of projections,” Duke Math. J., 31, No. 3, 455–461 (1964).CrossRefMathSciNetGoogle Scholar
  20. 20.
    A. M. Trakhtman and V. A. Trakhtman, Foundations of the Theory of Discrete Signals on Finite Intervals [in Russian], Sovetskoe Radio, Moscow (1975).Google Scholar
  21. 21.
    N. Ya. Vilenkin, “On one class of complete orthogonal systems,” Izv. Akad. Nauk SSSR, Ser. Mat., 11, 363–400 (1947).MATHMathSciNetGoogle Scholar
  22. 22.
    N. Ya. Vilenkin, “On the theory of Fourier integrals on topological groups,” Mat. Sb., 30, 233–244 (1952).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Vladimir State UniversityVladimirRussia

Personalised recommendations