Advertisement

Journal of Mathematical Sciences

, Volume 199, Issue 5, pp 488–500 | Cite as

Synthesis of the Optimal Control of Linear Logical-Dynamical Systems Under Instant Multiple Switchings of the Automaton Part

  • A. S. Bortakovskii
  • E. A. Pegachkova
Article
  • 29 Downloads

Abstract

We consider a dynamic system controlled by an automaton with memory. The continuous part of the system is described by linear differential equations and the logical (automaton) part is described by linear recurrence equations. The moments of the state change of the automaton part are not known in advance and they are determined in the process of optimization. Modes with instant multiple switchings of the automaton part are admitted. Based on sufficient optimality conditions, we develop a technique for the synthesis of a feedback control. The application of the technique is demonstrated in an example.

Keywords

Recurrence Equation Dynamical Part Logical Part Hybrid Dynamical System Moscow Aviation Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Boltyanskii, Optimal Control of Discrete Systems [in Russian], Nauka, Moscow (1973).Google Scholar
  2. 2.
    A. S. Bortakovskii, “Sufficient conditions of optimality of the automaton part of the logicaldynamical system,” J. Comput. Syst. Sci. Int., 45, No. 6, 917–932 (2006).CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    A. S. Bortakovskii, “Necessary conditions for the optimality of the automaton part of a logicaldynamical system,” Proc. Steklov Inst. Math., 262, 44–57 (2008).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    A. S. Bortakovskii, “Synthesis of logical-dynamical systems on the basis of sufficient optimality conditions,” J. Comput. Syst. Sci. Int., 49, No. 2, 207–221 (2010).CrossRefMathSciNetGoogle Scholar
  5. 5.
    A. S. Bortakovskii and A. V. Panteleev, “Sufficient conditions for the optimal control of continuous-discrete systems,” Avtomat. Telemekh., No. 7, 57–66 (1987).MathSciNetGoogle Scholar
  6. 6.
    A. S. Bortakovskii and E. A. Pegachkova, “Synthesis of optimal contral of logical-dynamical systems,” Tr. Mosk. Aviats. Inst., No. 27, http://www.mai.ru (25.04.2007).
  7. 7.
    C. G. Cassandras, D. L. Peryne, and Y. Wardi, “Optimal Control of a class of hybrid systems” IEEE Trans. Autom. Control, 46, No. 3, 398–415 (2001).CrossRefMATHGoogle Scholar
  8. 8.
    V. I. Gurman, Degenerate Problems of Optimal Control, Nauka, Moscow (1973).Google Scholar
  9. 9.
    V. F. Krotov and V. I. Gurman, Optimal Control: Methods and Problems, Nauka, Moscow (1973).Google Scholar
  10. 10.
    A. M. Letov, Flight Dynamics and Control, Nauka, Moscow (1973).Google Scholar
  11. 11.
    Z. Li, Y. Soh, and C. Wen, Switched and Impulsive Systems: Analysis, Design and Applications, Springer, Berlin (2005).Google Scholar
  12. 12.
    D. Liberson, Switching in Systems and Control, Springer, Berlin (2003).CrossRefGoogle Scholar
  13. 13.
    A. S. Matveev and A. V. Savkin, Qualitative Theory of Hybrid Dynamical Systems, Birkh¨auser, Boston (2000).CrossRefMATHGoogle Scholar
  14. 14.
    B. M. Miller and E. Ya. Rubinovich, Optimization of Dynamic Systems with Pulse Controls, Nauka, Moscow (2004).Google Scholar
  15. 15.
    A. V. Savkin and R. J. Evans, Hybrid Dynamical Systems: Controller and Sensor Switching Problems, Birkh¨auser, Boston (2002).CrossRefGoogle Scholar
  16. 16.
    V. V. Semenov, “Dynamic programming in the synthesis of the logical-dynamical systems,” Priborostroenie, No. 9, 71–77 (1984).Google Scholar
  17. 17.
    S. N. Vasilyev, A. K. Zherlov, E. A. Fedosov, and B. E. Fedunov, Intelligent Control of Dynamic Systems, Fizmatlit, Moscow (2000).Google Scholar
  18. 18.
    Hybrid Systems. V / Ed. by P. Ahtsaklis, W. Kohn, M. Lemmon, A. Nerode, S. Sastry, Springer, Berlin (1999). (Lect. Notes Comput. Sci., 1567).Google Scholar
  19. 19.
    Hybrid Systems. III / Ed. by R. Alur, T. A. Henzinger, E. D. Sontag, Springer, Berlin (1996). (Lect. Notes Comput. Sci., 1066).Google Scholar
  20. 20.
    Hybrid Systems / Ed. by R. L. Grossmann, A. Nerode, A.P. Ravn, H. Rischel, Springer, Berlin (1993). (Lect. Notes Comput. Sci., 736).Google Scholar
  21. 21.
    Modelling and analysis of logic controlled dynamic systems: IFAC Workshop. — Irkutsk: Inst. Syst. Dyn. and Control Theory. Sib. Branch RAS (2003).Google Scholar
  22. 22.
    Theory of Variable Structure Systems, edited by S. V. Emelyanov, Nauka, Moscow (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Moscow Aviation InstituteMoscowRussia

Personalised recommendations