Journal of Mathematical Sciences

, Volume 199, Issue 2, pp 236–246 | Cite as

Measures and Dirichlet Forms Under the Gelfand Transform

  • M. Hinz
  • D. Kelleher
  • A. Teplyaev

Using the standard tools of Daniell–Stone integrals, Stone–Čech compactification, and Gelfand transform, we show explicitly that any closed Dirichlet form defined on a measurable space can be transformed into a regular Dirichlet form on a locally compact space. This implies existence, on the Stone–Čech compactification, of the associated Hunt process. As an application, we show that for any separable resistance form in the sense of Kigami there exists an associated Markov process. Bibliography: 29 titles.


Radon Energy Measure Dirichlet Form Riesz Representation Theorem Stone Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Albeverio, Z.-M. Ma, and M. Röckner, “A Beurling–Deny type structure theorem for Dirichlet forms on general state spaces,” in: S. Albeverio, J. E. Fenstad, H. Holden, and T. Lindstrom (eds.), Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, Cambridge Univ. Press, Cambridge (1992), pp. 115–123.Google Scholar
  2. 2.
    S. Albeverio and M. Röckner, “Classical Dirichlet forms on topological vector spaces – construction of an associated diffusion process,” Probab. Th. Rel. Fields, 83, 405–434 (1989).CrossRefMATHGoogle Scholar
  3. 3.
    S. Albeverio and M. Röckner, “Classical Dirichlet forms on topological vector spaces – closability and a Cameron–Martin formula,” J. Funct. Anal., 88, 395–436 (1990).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    G. Allain, “Sur la représentation des formes de Dirichlet,” Ann. Inst. Fourier, 25, 1–10 (1975).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    W. Arveson, An Invitation to C*-Algebras, Springer Graduate Texts Math., 39, Springer, New York (1976).MATHGoogle Scholar
  6. 6.
    A. Beurling and J. Deny, “Espaces de Dirichlet. I, le cas élémentaire,” Acta Math., 99, 203–224 (1958).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    B. Blackadar, Operator Algebras: Theory of C*-Algebras and von Neumann Algebras, Encyclopedia Math. Sciences, 122, Springer, New York (2006).Google Scholar
  8. 8.
    N. Bouleau and F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, De Gruyter Studies Math., 14, De Gruyter, Berlin (1991).CrossRefMATHGoogle Scholar
  9. 9.
    J. Deny, Méthodes Hilbertiennes et Théorie du Potentiel, CIME, Rome (1970).Google Scholar
  10. 10.
    E. B. Dynkin, Foundations of the Theory of Markov Processes [in Russian], Moscow (1959).Google Scholar
  11. 11.
    E. B. Dynkin, Markov Processes [in Russian], Moscow (1963).Google Scholar
  12. 12.
    R. M. Dudley, Real Analysis and Probability, Cambridge Studies Adv. Math., 74, Cambridge Univ. Press, Cambridge (2002).CrossRefMATHGoogle Scholar
  13. 13.
    P. J. Fitzsimmons, “Markov processes and nonsymmetric Dirichlet forms without regularity,” J. Funct. Anal., 85, 287–306 (1989).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter, Berlin, New York (1994).CrossRefMATHGoogle Scholar
  15. 15.
    B. Fuchssteiner, “When does the Riesz representation theorem hold?” Arch. Math., 28, 173–181 (1977).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    L. Gross, “Potential theory on Hilbert space,” J. Funct. Anal., 1, 123–181 (1967).CrossRefMATHGoogle Scholar
  17. 17.
    L. Gross, Abstract Wiener spaces, in: Proc. Fifth Berkeley Sympos. Math. Statist. Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. California Press, Berkeley, CA (1967), pp. 31–42Google Scholar
  18. 18.
    I. A. Ibragimov and Yu. A. Rozanov, Gaussian Random Processes [in Russian], Moscow (1970).Google Scholar
  19. 19.
    E. Kaniuth, A Course in Commutative Banach Algebras, Springer, New York (2009).CrossRefMATHGoogle Scholar
  20. 20.
    J. Kigami, Analysis on Fractals, Cambridge Tracts Mathematics, 143, Cambridge Univ. Press (2001).Google Scholar
  21. 21.
    J. Kigami, “Harmonic analysis for resistance forms,” J. Funct. Anal., 204, 525–544 (2003).CrossRefMathSciNetGoogle Scholar
  22. 22.
    J. Kigami, “Resistance forms, quasisymmetric maps and heat kernel estimates,” Mem. Amer. Math. Soc., 216 (2012).Google Scholar
  23. 23.
    A. A. Kirillov, A Tale of Two Fractals [in Russian] (2010).Google Scholar
  24. 24.
    Y. LeJan, “Mesures associées à une forme de Dirichlet. Applications,” Bull. Soc. Math. France, 106, 61–112 (1978).MATHMathSciNetGoogle Scholar
  25. 25.
    Z.-M. Ma and M. Röckner, Introduction to the Theory of Nonsymmetric Dirichlet Forms, Universitext, Springer, Berlin (1992).CrossRefGoogle Scholar
  26. 26.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press (1980).Google Scholar
  27. 27.
    L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales. Vol. I, Foundations, 2nd ed., Wiley (1994).Google Scholar
  28. 28.
    R. S. Strichartz, Differential Equations on Fractals: a Tutorial, Princeton Univ. Press (2006).Google Scholar
  29. 29.
    V. N. Sudakov, “Geometric problems of the theory of infinite-dimensional probability distributions,” Trudy Mat. Inst. AN SSSR, 141, 191 (1976).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Friedrich-Schiller-UniversitätJenaGermany
  2. 2.University of ConnecticutStorrsUSA

Personalised recommendations