Advertisement

Journal of Mathematical Sciences

, Volume 198, Issue 4, pp 438–456 | Cite as

Compact Subdifferentials in Banach Cones

  • Igor’ V. Orlov
  • Zarema I. Khalilova
Article

Abstract

We construct, in general terms, the theory of first-order compact subdifferentials for mappings acting in Banach cones. The basic properties of K-subdifferentials up to the mean-value theorem and its nontrivial corollaries are studied. An application to variational functionals with nonsmooth integrand is considered.

Keywords

Compact subdifferential K-operator Banach cone K-limit mean-value theorem Euler–Lagrange inclusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Cartan, Calcul Differentiel. Formes Differentielles, Hermann, Paris, 1967.MATHGoogle Scholar
  2. 2.
    F. Clark, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.Google Scholar
  3. 3.
    V. F. Dem’yanov and V. A. Roshchina, “Generalized subdifferentials and exosters,” Vladikavk. Mat. Zh., 8, No. 4, 19–31 (2006).MathSciNetGoogle Scholar
  4. 4.
    A. V. Dmitruk, A. A. Milyutin, and N. P. Osmolovskii, “The Lyusternik theorem and the theory of extremum,” Uspekhi Mat. Nauk, 35:6, 11–46 (1980).MathSciNetGoogle Scholar
  5. 5.
    N. Dunford and J. T. Schwartz, Linear Operators. Pt. 1. General Theory, Interscience, New York, 1958.Google Scholar
  6. 6.
    L. E. El’sgol’ts, Differential Equations and Variational Calculus [in Russian], Nauka, Moscow, 1969.Google Scholar
  7. 7.
    B. Fuchssteiner and W. Lusky, Convex Cones, North-Holland, Amsterdam, 1981.MATHGoogle Scholar
  8. 8.
    Z. I. Khalilova, “K-sublinear multivalued operators and their properties,” Uch. Zap. Tavr. Nats. Univ. Ser. Fiz.-Mat. Nauk., 24(63), No. 3, 110–122 (2011).Google Scholar
  9. 9.
    Z. I. Khalilova, “Application of compact subdifferentials in Banach spaces to variational functionals,” Uch. Zap. Tavr. Nats. Univ. Ser. Fiz.-Mat. Nauk., 25(64), No. 2, 140–160 (2012).Google Scholar
  10. 10.
    A. G. Kusraev and S. S. Kutateladze, “Local convex analysis,” in: Totals of Science and Technique. Modern Problems of Mathematics [in Russian], VINITI, Moscow, 1982, 19, pp. 155–206.Google Scholar
  11. 11.
    L. I. Mandel’shtam, Lectures on the Theory of Oscillations [in Russian], Nauka, Moscow, 1972.Google Scholar
  12. 12.
    I. V. Orlov and Z. I. Khalilova, “Compact subdifferentials in Banach spaces and their application to variational functionals,” Sovr. Mat. Fund. Napr., 49, 99–131 (2013).Google Scholar
  13. 13.
    I. V. Orlov and F. S. Stonyakin, “Compact subdifferentials: formula of finite increments and related results,” Sovr. Mat. Fund. Napr., 34, 121–138 (2009).Google Scholar
  14. 14.
    I. V. Orlov and F. S. Stonyakin, “The limiting form of Radon–Nikodym properties is valid in any Frechet space,” Sovr. Mat. Fund. Napr., 37, 55–69 (2010).Google Scholar
  15. 15.
    B. N. Pshenichnyi, Convex Analysis and Extreme Problems [in Russian], Nauka, Moscow, 1980.Google Scholar
  16. 16.
    A. Ranjbari and H. Saiflu, “Some results on the uniform boundedness theorem in locally convex cones,” Meth. Funct. Anal. Topol., 15, No. 4, 361–368 (2009).MATHMathSciNetGoogle Scholar
  17. 17.
    R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, 1970.MATHGoogle Scholar
  18. 18.
    W. Roth, “A uniform boudedness theorem for locally convex cones,” Proc. of Amer. Math. Soc., 126, No. 7, 1973–1982 (1998).CrossRefMATHGoogle Scholar
  19. 19.
    F. S. Stonyakin, “An analog of the Denjoy–Young–Saks theorem of contingency for mappings in Frechet spaces and its application to the theory of vector integration,” Trudy IPMM NANU, 20, 168–176 (2010).MATHMathSciNetGoogle Scholar
  20. 20.
    F. S. Stonyakin, “Comparative analysis of the notion of compact subdifferential,” Visn. Khark. Nats. Univ. Ser. Mat. Prikl. Mat. Mekh., (2009), No. 850, 11–21.Google Scholar
  21. 21.
    M. F. Sukhinin, “On a weakened version of the rule of Lagrange multipliers in a Banach space,” Mat. Zamet., 21:2, 223–228 (1977).Google Scholar
  22. 22.
    M. F. Sukhinin, “The rule of Lagrange multipliers as a necessary condition of quasicriticality of the mappings of Banach spaces,” Uspekhi Mat. Nauk, 33:2, 183–184 (1978).Google Scholar
  23. 23.
    V. M. Tikhomirov, “Convex analysis,” Sovr. Mat. Fund. Napr., 14, 5–101 (1987).MathSciNetGoogle Scholar
  24. 24.
    A. I. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Dover, New York, 1990.Google Scholar
  25. 25.
    D. I. Trubetskov and A. G. Rozhnev, Linear Oscillations and Waves [in Russian], Fizmatlit, Moscow, 2001.Google Scholar
  26. 26.
    K. Yoshida, Functional Analysis, Springer, Berlin, 1967.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.V. I. Vernadskii Tavricheskii National UniversitySimferopolUkraine

Personalised recommendations