Advertisement

Journal of Mathematical Sciences

, Volume 197, Issue 6, pp 787–802 | Cite as

The Lattice of Fully Invariant Subgroups of the Cotorsion Hull

  • T. Kemoklidze
Article
  • 25 Downloads

Abstract

In this paper, we consider the lattice of fully invariant subgroups of the cotorsion hull of a separable p-group, which is assumed to be an arbitrary direct sum of torsion-complete p-groups. It is shown that this lattice is isomorphic to the lattice of filters of a lower semilattice made up of infinite matrices.

Keywords

Abelian Group Compact Group Invariant Subgroup Divisible Group Pure Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Baer, “Type of elements and characteristic subgroups of Abelian groups,” Proc. London Math. Soc. (2), 39, 481–514 (1935).CrossRefMathSciNetGoogle Scholar
  2. 2.
    K. M. Benabdallah, B. J. Eisenstadt, J. M. Irvin, and E. W. Poluianov, “The structure of large subgroups of primary Abelian groups,” Acta Math. Acad. Sci. Hungar., 21, 421–435 (1970).CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    S. Files and B. Goldsmith, “Transitive and fully transitive groups,” Proc. Am. Math. Soc., 126, No. 6, 1605–1610 (1998).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    L. Fuchs, Infinite Abelian Groups, Vol. I, Pure Appl. Math., 36, Academic Press, New York–London (1970).Google Scholar
  5. 5.
    L. Fuchs, Infinite Abelian Groups, Vol. II, Pure Appl. Math., 36-II, Academic Press, New York–London (1973).Google Scholar
  6. 6.
    R. Göber, “The characteristic subgroups of the Baer–Specker group,” Math. Z., 140, No. 3, 289–292 (1974).CrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Ya. Grinshpon, “Completely characteristic subgroups of separable Abelian groups,” Fundam. Prikl. Mat., 4, No. 4, 1279–1305 (1998).MATHMathSciNetGoogle Scholar
  8. 8.
    S. Ya. Grinshpon and P. A. Krylov, “Fully invariant subgroups, full transitivity, and homomorphism groups of Abelian groups,” J. Math. Sci., 128, No. 3, 2894–2997 (2005).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    P. Hill and C. Megibben, “On the theory and classification of Abelian p-groups,” Math. Z., 190, No. 1, 17–38 (1985).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    I. Kaplansky, Infinite Abelian Groups, The Univ. of Michigan Press, Ann Arbor (1969).MATHGoogle Scholar
  11. 11.
    T. Kemoklidze, “On the full transitivity of a cotorsion hull,” Georgian Math. J., 13, No. 1, 79–84 (2006).MATHMathSciNetGoogle Scholar
  12. 12.
    T. Kemoklidze, “On the full transitivity and fully invariant subgroups of cotorsion hulls of separable p-groups,” J. Math. Sci., 155, No. 5, 748–786 (2008).CrossRefMathSciNetGoogle Scholar
  13. 13.
    T. Kemoklidze, “The lattice of fully invariant subgroups of a cotorsion hull,” Georgian Math. J., 16, 89–104 (2009).MATHMathSciNetGoogle Scholar
  14. 14.
    L. Ya. Kulikov, “Generalized primary groups, I,” Tr. Mosk. Mat. Obshch., 1, 247–326 (1952).MathSciNetGoogle Scholar
  15. 15.
    R. S. Linton, “On fully invariant subgroups of primary Abelian groups,” Mich. Math. J., 22, No. 3, 281–284 (1976).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    W. May and E. Toubassi, “Endomorphisms of Abelian groups and the theorem of Baer and Kaplansky,” J. Algebra, 43, No. 1, 1–13 (1976).CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    A. Mader, “The fully invariant subgroups of reduced algebraically compact groups,” Publ. Math. Debrecen, 17, 299–306 (1971).MATHMathSciNetGoogle Scholar
  18. 18.
    V. M. Misyakov, “On full transitivity of reduced Abelian groups,” in: Abelian Groups and Modules [in Russian], Tomsk State Univ., Tomsk (1993), pp. 134–156.Google Scholar
  19. 19.
    J. D. Moore and E. J. Hewett, “On fully invariant subgroups of Abelian p-groups,” Comment. Math. Univ. St. Paul, 20, 97–106 (1971/72).MathSciNetGoogle Scholar
  20. 20.
    A. I. Moskalenko, “Cotorsion hull of a separable group,” Algebra Logika, 28, No. 2, 207–226 (1989).CrossRefMathSciNetGoogle Scholar
  21. 21.
    R. S. Pierce, “Homomorphisms of primary Abelian groups,” in: Topics in Abelian Groups (Proc. Symp. New Mexico State Univ., 1962), Scott, Foresman and Co., Chicago, Ill (1963), pp. 215–310.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.A. Tsereteli Kutaisi State UniversityKutaisiGeorgia

Personalised recommendations