Advertisement

Journal of Mathematical Sciences

, Volume 197, Issue 5, pp 708–733 | Cite as

On Abelian Groups Close to E-Solvable Groups

  • A. R. Chekhlov
Article

Abstract

E-nilpotent and E-solvable Abelian groups are studied. The properties of such groups are studied, and examples illustrating the differences and connections between the investigated classes of groups are presented. The structure of E-solvable periodical, completely decomposable, coperiodic, split mixed, and other groups is shown.

Keywords

Abelian Group Direct Summand Commutative Ring Endomorphism Ring Periodic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bourbaki, Groupes et Algébres de Lie, Hermann, Paris (1971, 1972).Google Scholar
  2. 2.
    A. R. Chekhlov, “Intersection of direct summands of Abelian p-groups,” in: Abelian Groups and Modules, Tomsk (1981), pp. 240–244.Google Scholar
  3. 3.
    A. R. Chekhlov, “On some classes of Abelian groups,” in: Abelian Groups and Modules, Tomsk (1984), pp. 137–152.Google Scholar
  4. 4.
    A. R. Chekhlov, “On torsion-free Abelian groups close to quasi-pure-injective ones,” in: Abelian Groups and Modules, Tomsk (1985), pp. 117–127.Google Scholar
  5. 5.
    A. R. Chekhlov, “On quasipure-injective Abelian torsion-free groups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 80–83 (1988).Google Scholar
  6. 6.
    A. R. Chekhlov, “Cohesive quasipure-injective Abelian groups,” Sov. Math., 33, No. 10, 116–120 (1989).MATHMathSciNetGoogle Scholar
  7. 7.
    A. R. Chekhlov, “Abelian torsion-free CS-groups,” Sov. Math., 34, No. 3, 103–106 (1990).MATHMathSciNetGoogle Scholar
  8. 8.
    A. R. Chekhlov, “Direct products and direct sums of torsion-free Abelian QCPI-groups,” Sov. Math., 34, No. 4, 69–79 (1990).MATHMathSciNetGoogle Scholar
  9. 9.
    A. R. Chekhlov, “Torsion-free Abelian groups of finite p-rank with complemented closed pure subgroups,” in: Abelian Groups and Modules, Tomsk (1991), pp. 157–178.Google Scholar
  10. 10.
    A. R. Chekhlov, “Quasipure injective torsion-free groups with indecomposable pure subgroups,” Math. Notes, 68, No. 4, 502–506 (2000).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    A. R. Chekhlov, “On a class of endotransitive groups,” Math. Notes, 69, No. 6, 863–867 (2001).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    A. R. Chekhlov, “On decomposable fully transitive torsion-free groups,” Sib. Math. J., 42, No. 3, 605–609 (2001).CrossRefMathSciNetGoogle Scholar
  13. 13.
    A. R. Chekhlov, “Totally transitive torsion-free groups of finite p-rank,” Algebra and Logic, 40, No. 6, 391–400 (2001).CrossRefMathSciNetGoogle Scholar
  14. 14.
    A. R. Chekhlov, “On quasi-closed mixed groups,” Fundam. Prikl. Mat., 8, No. 4, 1215–1224 (2002).MATHMathSciNetGoogle Scholar
  15. 15.
    A. R. Chekhlov, “On mixed cs-groups,” Acta Appl. Math., 85, 75–85 (2005).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    A. R. Chekhlov, “On weakly quasipure injective groups,” Math. Notes, 81, No. 3, 379–391 (2007).CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    A. R. Chekhlov, “Properties of projective invariant subgroups of Abelian groups,” Vestn. Tomsk. Univ. Mat. Mekh., No. 1 (2), 76–82 (2008).Google Scholar
  18. 18.
    A. R. Chekhlov, “Abelian groups with normal endomorphism rings,” Algebra and Logic, 48, No. 4, 298–308 (2009).CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    A. R. Chekhlov, “On projective invariant subgroups of Abelian groups,” Vestn. Tomsk. Univ. Mat. Mekh., No. 1 (5), 31–36 (2009).Google Scholar
  20. 20.
    A. R. Chekhlov, “On the Lie bracket of endomorphisms of Abelian groups,” Vestn. Tomsk. Univ. Mat. Mekh., No. 2 (6), 78–84 (2009).Google Scholar
  21. 21.
    A. R. Chekhlov, “Separable and vector groups whose projectively invariant subgroups are fully invariant,” Sib. Math. J., 50, No. 4, 748–756 (2009).CrossRefMathSciNetGoogle Scholar
  22. 22.
    A. R. Chekhlov, “E-nilpotent and E-solvable Abelian groups of class 2,” Vestn. Tomsk. Univ. Mat. Mekh., No. 1 (9), 59–71 (2010).Google Scholar
  23. 23.
    A. R. Chekhlov, “E-solvable Abelian groups of class 2,” Fundam. Prikl. Mat., 16, No. 7, 221–236 (2010).MathSciNetGoogle Scholar
  24. 24.
    A. R. Chekhlov, “On commutator invariant subgroups of Abelian groups,” Sib. Math. J., 51, No. 5, 926–934 (2010).CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    A. R. Chekhlov, “On projective invariant subgroups of Abelian groups,” J. Math. Sci., 164, No. 1, 143–147 (2010).CrossRefMathSciNetGoogle Scholar
  26. 26.
    A. R. Chekhlov, “Some examples of E-solvable groups,” Vestn. Tomsk. Univ. Mat. Mekh., No. 3 (11), 69–76 (2010).Google Scholar
  27. 27.
    A. R. Chekhlov and P. A. Krylov, “Torsion-free Abelian groups with large number of endomorphisms,” Proc. Steklov Inst. Math., Suppl. 2, 156–168 (2001).Google Scholar
  28. 28.
    A. R. Chekhlov and P. A. Krylov, “On L. Fuchs’ problems 17 and 43,” J. Math. Sci., 143, No. 5, 3517–3602 (2007).CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    C. Faith, Algebra. II. Ring Theory, Springer, Berlin (1976).CrossRefGoogle Scholar
  30. 30.
    L. Fuchs, Infinite Abelian Groups, Academic Press, New York (1970, 1973).MATHGoogle Scholar
  31. 31.
    S. Ya. Grinshpon, “On the structure of fully invariant subgroups of Abelian torsion-free groups,” in: Abelian Groups and Modules, Tomsk (1981), pp. 56–92.Google Scholar
  32. 32.
    P. A. Krylov, A. V. Mikhalev, and A. A. Tuganbaev, Endomorphism Rings of Abelian Groups, Kluwer Academic, Dordrecht (2003).CrossRefMATHGoogle Scholar
  33. 33.
    A. A. Tuganbaev, Ring Theory (Arithmetical Modules and Rings), MCCME, Moscow (2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussia

Personalised recommendations