Advertisement

Journal of Mathematical Sciences

, Volume 197, Issue 1, pp 108–113 | Cite as

Averaging of Fuzzy Controlled Differential Inclusions with Terminal Quality Criterion

  • A.V. Plotnikov
Article

We analyze the possibility of application of an averaging scheme to the problems of control with terminal quality criterion in the case where the behavior of the system is described by a controlled fuzzy differential inclusion containing a small parameter.

Translated from Neliniini Kolyvannya, Vol. 16, No. 1, pp. 105–110, January–March, 2013.

Keywords

Differential Inclusion Asymptotic Method Admissible Control Average Scheme Nonlinear Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics [in Russian], Izd. Akad. Nauk Ukr. SSR, Kiev (1937).Google Scholar
  2. 2.
    N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1974).Google Scholar
  3. 3.
    V. M. Volosov and B. I. Morgunov, Averaging Method in the Theory of Nonlinear Oscillations [in Russian], Moscow University, Moscow (1971).Google Scholar
  4. 4.
    E. A. Grebenikov, Averaging Method in Applied Problems [in Russian], Nauka, Moscow (1986).Google Scholar
  5. 5.
    Yu. A. Mitropol’skii, Averaging Method in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  6. 6.
    Yu. A. Mitropol’skii and G. N. Khoma, Mathematical Substantiation of the Asymptotic Methods of Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1983).Google Scholar
  7. 7.
    N. N. Moiseev, Asymptotic Methods of Nonlinear Mechanics [in Russian], Nauka, Moscow (1981).Google Scholar
  8. 8.
    N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Impulsive Differential Equations with Multivalued and Discontinuous Right-Hand Sides [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2007).Google Scholar
  9. 9.
    V. A. Plotnikov, Averaging Method in the Problems of Control [in Russian], Lybid’, Kiev (1992).Google Scholar
  10. 10.
    V. A. Plotnikov, A. V. Plotnikov, and A. N. Vityuk, Differential Equations with Multivalued Right-Hand Sides. Asymptotic Methods [in Russian], AstroPrint, Odessa (1999).Google Scholar
  11. 11.
    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations [in Russian], Vyshcha Shkola, Kiev (1987).Google Scholar
  12. 12.
    A. M. Samoilenko and R. I. Petryshyn, Mathematical Aspects of the Theory of Nonlinear Oscillations [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2004).Google Scholar
  13. 13.
    A. V. Plotnikov, “Averaging of equations of controlled motion with multiple-valued trajectories,” Ukr. Mat. Zh., 39, No. 5, 657–659 (1987); English translation: Ukr. Math. J., 39, No. 5, 538–540 (1987).Google Scholar
  14. 14.
    A. V. Plotnikov, “Asymptotic investigation of equations of controlled motion with multivalued trajectories,” Ukr. Mat. Zh., 42, No. 10, 1409–1412 (1990); English translation: Ukr. Math. J., 42, No. 10, 1251–1254 (1990).Google Scholar
  15. 15.
    A. V. Plotnikov, “Averaging of equations of controlled motion with multivalued quality criterion,” Nelin. Kolyvannya, 3, No. 4, 505–510 (2000).MATHMathSciNetGoogle Scholar
  16. 16.
    A.V. Plotnikov, T. A. Komleva, and L. I. Plotnikova, “The partial averaging of differential inclusions with fuzzy right-hand side,” J. Adv. Res. Dynam. Contr. Syst., 2, No. 2, 26–34 (2010).MathSciNetGoogle Scholar
  17. 17.
    A.V. Plotnikov, T. A. Komleva, and L. I. Plotnikova, “On the averaging of differential inclusions with fuzzy right-hand side when the average of the right-hand side is absent,” Iran. J. Optim., 2, No. 3, 506–517 (2010).MathSciNetGoogle Scholar
  18. 18.
    A.V. Plotnikov, “Averaging of fuzzy integrodifferential inclusions,” Int. J. Contr. Sci. Eng., 1, No. 1, 8–14 (2011).CrossRefGoogle Scholar
  19. 19.
    A.V. Plotnikov and T. A. Komleva, “Linear problems of optimal control of fuzzy maps,” Intelligent Information Management (Sci. Res. Publ., Inc., USA), 1, No. 3, 139–144 (2009).Google Scholar
  20. 20.
    A.V. Plotnikov, T. A. Komleva, and I.V. Molchanyuk, “Linear control problems of the fuzzy maps,” J. Software Eng. & Appl. (Sci. Res. Publ., Inc., USA), 3, No. 3, 191–197 (2010).Google Scholar
  21. 21.
    A.V. Plotnikov, T. A. Komleva, and I.V. Molchanyuk, “Linear control differential inclusions with fuzzy right-hand side and some optimal problems,” J. Adv. Res. Dynam. Contr. Syst. (Inst. Adv. Sci. Res., USA), 3, No. 2, 34–46 (2011).Google Scholar
  22. 22.
    A.V. Plotnikov, T. A. Komleva, and I.V. Molchanyuk, “The time-optimal problems for controlled fuzzy R-solutions,” Intelligent Control and Automation (Sci. Res. Publ., Inc., USA), 2, No. 2, 152–159 (2011).Google Scholar
  23. 23.
    A.V. Plotnikov and T. A. Komleva, “The averaging of control linear fuzzy 2π-periodic differential equations,” Dynam. Contin., Discrete and Impulsive Syst., Ser. B. Applications & Algorithms, 18, No. 6, 833–847 (2011).Google Scholar
  24. 24.
    C.V. Negoita and D. A. Ralescu, Application of Fuzzy Sets to Systems Analysis, Wiley, New York (1975).CrossRefGoogle Scholar
  25. 25.
    M. L.Puri and D. A. Ralescu, “Fuzzy random variables,” J. Math. Anal. Appl., 114, 409–422 (1986).CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    E. Hüllermeier, “An approach to modeling and simulation of uncertain dynamical system,” Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 7, 117–137 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Odessa State Academy of Building and ArchitectureOdessaUkraine

Personalised recommendations