Journal of Mathematical Sciences

, Volume 196, Issue 5, pp 652–664 | Cite as

Diagonals of separately pointwise Lipschitz mappings

  • Volodymyr V. Mykhaylyuk
  • Oleksandr V. Sobchuk


It is proved that, for a metric space X and a normed space Z, the diagonals of pointwise Lipschitz mappings f : X 2→ Z are exactly stable pointwise limits of pointwise Lipschitz mappings. The joint Lipschitz property of separately pointwise Lipschitz mappings f : X × Y → Z, where X, Y, and Z are metric spaces, is investigated.


Diagonals of mappings Lipschitz mappings pointwise Lipschitz mappings σ-Lipschitz mappings stable limits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Baire, “Sur les fonctions de variables reélles,” Ann. Mat. Pura Appl., 3, No. 3, 1–123 (1899).CrossRefMATHGoogle Scholar
  2. 2.
    T. Banakh, “(Metrically) Quater-stratifable spaces and their applications in the theory of separately continuous functions,” Mat. Stud., 18, No. 1, 10–18 (2002).MATHMathSciNetGoogle Scholar
  3. 3.
    K. Borsuk, Theory of Retracts, Panstw. Wydawn. Naukowe, Warsaw, 1967.MATHGoogle Scholar
  4. 4.
    M. Burke, “Borel measurability of separately continuous functions,” Top. Appl., 129, No. 1, 29–65 (2003).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    J. Dugundji, “An extension of Tietze’s theorem,” Pacific. J. Math., 1, 353–367 (1951).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    R. Engelking, General Topology, Panstw. Wydawn. Naukowe, Warsaw, 1977.MATHGoogle Scholar
  7. 7.
    G. N. Fikhtengol’ts, Course of Differential and Integral Calculi [in Russian], GITTL, Moscow, 1951, Vol. 2.Google Scholar
  8. 8.
    V. G. Gerasymchuk, V. K. Maslyuchenko, and V. V. Mykhaylyuk, “Varieties of the Lipschitz property and sets of the discontinuity points of separately differentiable functions,” Nauk. Visn. ChNU. Mat., 134, 22–29 (2002).MATHGoogle Scholar
  9. 9.
    H. Hahn, Theorie der Reellen Funktionen, Band 1, Springer, Berlin, 1921.CrossRefGoogle Scholar
  10. 10.
    H. Lebesque, “Sur l’approximation des fonctions,” Bull. Sci. Math., 22, 278–287 (1898).Google Scholar
  11. 11.
    H. Lebesque, “Sur les fonctions representables analytiquement,” J. de Math., 2, No. 1, 139–216 (1905).Google Scholar
  12. 12.
    V. K. Maslyuchenko, V. V. Mykhaylyuk, and O. V. Sobchuk, “Construction of a separately continuous function of n variables with given diagonal,” Mat. Studii, 12, No. 1, 101–107 (1999).MATHGoogle Scholar
  13. 13.
    O. V. Maslyuchenko, V. K. Maslyuchenko, V. V. Mykhaylyuk, and O. V. Sobchuk, “Paracompactness and separately continuous mappings,” in: General Topology in Banach spaces, Nova Sci., New York, 2001, pp. 147–169.Google Scholar
  14. 14.
    W. Moran, “Separate continuity and support of measures,” J. London. Math. Soc., 44, 320–324 (1969).CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    V. V. Mykhaylyuk, “Construction of separately continuous functions of n variables with given restriction,” Ukr. Mat. Visn., 3, No. 3, 374–381 (2006).MathSciNetGoogle Scholar
  16. 16.
    W. Rudin, “Lebesgue’s first theorem,” Adv. in Math. Suppl. Stud., 7B, 741–747 (1981).MathSciNetGoogle Scholar
  17. 17.
    G. Vera, “Baire measurability of separately continuous functions,” Quart. J. Math. Oxford, 39, No. 153, 109–116 (1988).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Volodymyr V. Mykhaylyuk
    • 1
  • Oleksandr V. Sobchuk
    • 1
  1. 1.Chernivtsi National UniversityChernivtsiUkraine

Personalised recommendations