Journal of Mathematical Sciences

, Volume 196, Issue 5, pp 617–631 | Cite as

Quasiisometry from different points of view

  • Anatoly Golberg


We provide various characterizations of quasiisometric homeomorphisms in \( {{\mathbb{R}}^n} \) raised by the geometric, metric, analytic, and modular approaches.


Quasiisometry quasiconformality bi-Lipschitz mappings p-module of k-dimensional surface families module of ring domains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Alestalo, D. A. Trotsenko, and J. Väisälä, “Isometric approximation,” Israel J. Math., 125, 61–82 (2001).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    P. P. Belinskiĭ, General Properties of Quasiconformal Mappings [in Russian], Nauka, Novosibirsk, 1974.Google Scholar
  3. 3.
    Ch. Bishop, “Bilipschitz approximations of quasiconformal mappings,” Ann. Acad. Sci. Fenn. Math., 27, 97–108 (2002).MATHMathSciNetGoogle Scholar
  4. 4.
    Ch. Bishop, V. Ya. Gutlyanskiĭ, O. Martio, and M. Vuorinen, “On conformal dilatation in space,” Int. J. Math. Math. Sci., 22, 1397–1420 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Freedman and Z.-Xu He, “Factoring the logarithmic spiral,” Invent. Math., 92, No. 1, 129–138 (1988).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    F. W. Gehring, “Lipschitz mappings and the p-capacity of rings in n-space,” Advances in the Theory of Riemann Surfaces, Princeton Univ. Press, Princeton, NJ, 1971, pp. 175–193.Google Scholar
  7. 7.
    A. Golberg, “On geometric and analytic definitions of quasiconformality,” Mat. Stud., 18, No. 1, 29–34 (2002).MATHMathSciNetGoogle Scholar
  8. 8.
    A. Golberg, “On quasiisometric mappings,” Complex Analysis and Potential Theory, Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev, 2003, pp. 34–37.Google Scholar
  9. 9.
    A. Golberg, “Quasiisometric homeomorphisms and p-moduli of separating sets,” Mat. Stud., 21, No. 1, 101–104 (2004).MATHMathSciNetGoogle Scholar
  10. 10.
    A. Golberg, “Homeomorphisms with finite mean dilatations,” Contemp. Math., 382, 177–186 (2005).CrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Golberg, “Generalized classes of quasiconformal homeomorphisms,” Math. Rep. (Bucur.), 7(57), No. 4, 289–303 (2005).MathSciNetGoogle Scholar
  12. 12.
    A. Golberg, “On generalization of Menshoff’s theorem,” Israel J. Math., 156, 243–254 (2006).CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    A. Golberg, “Distortion of the Grötzsch–Belinskii type for generalized quasiconformal mappings,” Georgian Math. J., 17, 241–252 (2010).MATHMathSciNetGoogle Scholar
  14. 14.
    A. Golberg, “Homeomorphisms with integrally restricted moduli,” Contemp. Math., 553, 83–98 (2011).CrossRefMathSciNetGoogle Scholar
  15. 15.
    V. Gol’dshtein and Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Kluwer, Dordrecht, 1990.CrossRefMATHGoogle Scholar
  16. 16.
    V. Ya. Gutlyanskiĭ and A. Golberg, “On Lipschitz continuity of quasiconformal mappings in space,” J. Anal. Math., 109, 233–251 (2009).CrossRefMathSciNetGoogle Scholar
  17. 17.
    V. Gutlyanskiĭ and T. Sugawa, “On Lipschitz continuity of quasiconformal mappings,” Papers on Analysis, No. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 91–108.Google Scholar
  18. 18.
    J. Heinonen and P. Koskela, “Definitions of quasiconformality,” Invent. Math., 120, No. 1, 61–79 (1995).CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    F. John, “On quasi-isometric mappings, I,” Comm. Pure Appl. Math., 21, 77–110 (1968).CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    F. John, “On quasi-isometric mappings, II,” Comm. Pure Appl. Math., 22, 265–278 (1969).CrossRefMathSciNetGoogle Scholar
  21. 21.
    D. Kovtonyk and V. Ryazanov, “On the theory of mappings with finite area distortion,” J. Anal. Math., 104, 291–306 (2008).CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    D. Kovtonyk and V. Ryazanov, “On the theory of lower Q-homeomorphisms,” Ukr. Math. Bull., 5, No. 2, 157–181 (2008).MathSciNetGoogle Scholar
  23. 23.
    D. Kovtonyk and V. Ryazanov, “Toward the theory of generalized quasi-isometries,” Mat. Stud., 34, 129–135 (2010).MathSciNetGoogle Scholar
  24. 24.
    D. Kovtonyk and V. Ryazanov, “On boundary behavior of generalized quasi-isometries,” J. Anal. Math., 115, 103–119 (2011).CrossRefMathSciNetGoogle Scholar
  25. 25.
    V. I. Kruglikov, “Capacities of condensors and quasiconformal in the mean mappings in space,” Mat. Sb., 130, No. 2, 185–206 (1986).MathSciNetGoogle Scholar
  26. 26.
    S. L. Krushkal, Quasiconformal Mappings and Riemann Surfaces, Winston, Washington, DC; Wiley, New York, 1979.Google Scholar
  27. 27.
    V. S. Kud’yavin, “A characteristic property of a class of n-dimensional homeomorphisms,” Dokl. Akad. Nauk Ukr. SSR. Ser. A, No. 3, 7–9 (1990).Google Scholar
  28. 28.
    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, Berlin, 2009.MATHGoogle Scholar
  29. 29.
    P. Mattila and P. Saaranen, “Ahlfors–David regular sets and bilipschitz maps,” Ann. Acad. Sci. Fenn. Math., 34, 487–502 (2009).MATHMathSciNetGoogle Scholar
  30. 30.
    D. Menshoff, “Sur une generalisation d’un theoreme de M. H. Bohr,” Mat. Sb., 2, 339–356 (1937).Google Scholar
  31. 31.
    T. Rado and P. Reichelderfer, Continuous Transformations in Analysis, Springer, Berlin, 1955.CrossRefMATHGoogle Scholar
  32. 32.
    Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence, RI, 1989.MATHGoogle Scholar
  33. 33.
    S. Rohde, “Bi-Lipschitz maps and the modulus of rings,” Ann. Acad. Sci. Fenn. Math., 22, No. 2, 465–474 (1997).MATHMathSciNetGoogle Scholar
  34. 34.
    R. Salimov, “On finite Lipschitz space mappings,” Siberian Electr. Math. Rep., 8, 284–295 (2011).MathSciNetGoogle Scholar
  35. 35.
    V. V. Stepanov, “Sur les conditions de l’existence de la differentielle totale,” Mat. Sb., 30, 487–489 (1924).Google Scholar
  36. 36.
    G. D. Suvorov, The Generalized “Length and Area Principle” in Mapping Theory [in Russian], Naukova Dumka, Kiev, 1985.Google Scholar
  37. 37.
    O. Teichmüller, “Untersuchungen über konforme und quasikonforme Abbildung,” Deutsche Math., 3, 621–678 (1938).Google Scholar
  38. 38.
    P. Tukia and J. Väisälä, “Bilipschitz extentions of maps having quasiconformal extensions,” Math. Ann., 269, 561–572 (1984).CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin, 1971.MATHGoogle Scholar
  40. 40.
    J. Väisälä, “Banach spaces and bilipschitz maps,” Studia Math., 103, 291–294 (1992).MATHMathSciNetGoogle Scholar
  41. 41.
    M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Springer, Berlin, 1988.MATHGoogle Scholar
  42. 42.
    H. Wittich, “Zum Beweis eines Satzes über quasikonforme Abbildungen,” Math. Zeutschr., 51, 275–288 (1948).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Applied MathematicsHolon Institute of TechnologyHolonIsrael

Personalised recommendations