Journal of Mathematical Sciences

, Volume 196, Issue 3, pp 405–433 | Cite as

Properties of Solutions of a Control System with Hysteresis

  • A. A. Tolstonogov

We consider a control system described by two nonlinear related equations. The first equation expresses connection between the input and output of the hysteresis operator, whereas the second one is the diffusion equation. The control constraint is expressed by a multivalued mapping of a phase variable with closed nonconvex values in a finitedimensional space. We also consider a system with a convexified control constraint. We study the existence of a solution, topological properties of the set of admissible “trajectory–control” pairs with different control constraints and clarify relations between the sets of solutions. Bibliography: 28 titles.


Multivalued Mapping Density Point Maximal Monotone Operator Control Constraint Lower Semicontinuous Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Krasnosel’skii and A. V. Pokrovskii, Systems with Hysteresis, Nauka, Moscow (1983).Google Scholar
  2. 2.
    A. Visintin, Differential Models of Hysteresis, Springer, Berlin (1994).CrossRefMATHGoogle Scholar
  3. 3.
    A. Visintin, Models of Phase Transitions, Birkhäuser, Basel etc. (1996).CrossRefMATHGoogle Scholar
  4. 4.
    M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York (1996).CrossRefMATHGoogle Scholar
  5. 5.
    P. Colli, N. Kenmochi, and M. Kubo, “A phase-field model with temperature dependent constraint,” J. Math. Anal. Appl. 256, 668–685 (2001).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    N. Kenmochi, E. Minchev, and T. Okazaki, “On a system of nonlinear PDE’s with diffusion and hysteresis effects,” Adv. Math. Sci. Appl. 14, 633–664 (2004).MATHMathSciNetGoogle Scholar
  7. 7.
    N. Kenmochi and A. Visintin, “Asymptotic stability for nonlinear PDEs with hysteresis,” European J. Appl. Math. 5, 39–56 (1994).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    E. Minchev, T. Okazaki, and N. Kenmochi, “Ordinary differential systems describing hysteresis effects and numerical simulations,” Abstr. Appl. Anal. 7, 563–583 (2002).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    T. Okazaki, “Large time behaviour of orbit of the nonlinear ODE system with hysteresis effect,” Adv. Math. Sci. Appl. 14, 211–239 (2004).MATHMathSciNetGoogle Scholar
  10. 10.
    N. Yamazaki, M. Takahashi, and M. Kubo, “Global attractors of phase transition models with hysteresis and diffusion effects,” GAKUTO Intern. Series. Math. Sci. Appl. 14, 460–471 (2000).MathSciNetGoogle Scholar
  11. 11.
    K. H. Hoffmann, N. Kenmochi, M. Kubo, and N. Yamazaki, “Optimal control problems for models of phase-field type with hysteresis of play operator,” Adv. Math. Sci. Appl. 17, No. 1, 305–336 (2007).MATHMathSciNetGoogle Scholar
  12. 12.
    S. A. Timoshin and A. A. Tolstonogov, “Existence and properties of solutions of a control system with hysteresis effect,” Nonlinear Anal., Theory, Meth., Appl. 74, 4433–4447 (2011).CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    S. A. Timoshin and A. A. Tolstonogov, “Bogolyubov type theorem with constraints induced by a control system with hysteresis effect,” Nonlinear Anal., Theory, Meth., Appl. 75, 5884–5893 (2012).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    A. A. Tolstonogov, “Properties of the set of admissible “state-control” pairs for first-order evolution control systems” [in Russian], Izv. Ross. Akad. Nauk, Ser. Mat. 65, No. 3, 201–224 (2001); English transl.: Izv. Math. 65, No. 3, 617–640 (2001).CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    A. A. Tolstonogov, “Properties of the set of “trajectory-control” pairs of a control system with subdifferential” [in Russian], Probl. Mat. Anal. 42, 95–127 (2009); English transl.: J. Math. Sci., New York 162, No. 3, 407-442 (2009).CrossRefMathSciNetGoogle Scholar
  16. 16.
    K. Kuratowski, Topology. I, Academic Press, New York etc. (1966).Google Scholar
  17. 17.
    I. P. Natanson, Theory of Functions of a Real Variable [in Russian], Nauka, Moscow (1974).Google Scholar
  18. 18.
    H. Attouch Variational Convergence for Functions and Operators, Pitman, Boston etc. (1984).MATHGoogle Scholar
  19. 19.
    C. J. Himmelberg, “Measurable relation,” Fund. Math. 87, 53–72 (1975).MATHMathSciNetGoogle Scholar
  20. 20.
    A. A. Tolstonogov and D. A. Tolstonogov, “L p-continuous extreme selectors of multifunctions with decomposable values: Existence theorems,” Set-Valued Anal. 4, 173–203 (1996).CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    A. Fryszkowski, “Continuous selections for a class of nonconvex multivalued maps,” Studia Math. 76, 163–174 (1983).MATHMathSciNetGoogle Scholar
  22. 22.
    F. Hiai and H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions,” J. Multivar. Anal. 7, 149–182 (1977).CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    P. Colli and K. H. Hoffmann, “A nonlinear evolution problem describing multicomponent phase changes with dissipation,” Numer. Funct. Anal., Optim. 14, No. 3–4, 275–297 (1993).CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    V. Barbu, Partial Differential Equations and Boundary Value Problems, Kluwer Acad. Publ., Dordrecht (1998).CrossRefMATHGoogle Scholar
  25. 25.
    H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam etc.; Elsevier, New-York (1973).MATHGoogle Scholar
  26. 26.
    A. A. Tolstonogov and D. A. Tolstonogov, “L p-continuous extreme selectors of multifunctions with decomposable values: Relaxation theorems,” Set-Valued Anal. 4, 237–269 (1996).CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    L. Schwartz, Analysis. I [Russian translation], Mir, Moscow (1972).Google Scholar
  28. 28.
    A. A. Tolstonogov, “Scorza–Dragoni’s theorem for multivalued mappings with variable domain of definition” [in Russian], Mat. Zametki 48, No. 5, 110–120 (1990); English transl.: Math. Notes 48, No. 5, 1151-1158 (1990).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute for System Dynamics and Control TheorySiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations