Journal of Mathematical Sciences

, Volume 193, Issue 4, pp 537–547 | Cite as

Determinant theory for lattice matrices

  • E. E. Marenich


The determinant theory for matrices over a pseudo-complemented distributive lattice is presented. Previous results on this topic are special cases of the theorems proved in this paper.


Distributive Lattice Similar Reasoning Permutation Matrix Zero Matrix Permutation Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. I. Aranovich, “Applications of matrix methods to problems in analysis of contact-relay networks,” Avtomat. Telemekh., 10, 437–451 (1949).Google Scholar
  2. 2.
    D. de Caen and D. A. Gregory, “Primes in the semigroup of Boolean matrices,” Linear Algebra Appl., 37, 119–134 (1981).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    K. Chechlarova, “Powers of matrices over distributive lattices. A review,” Fuzzy Sets Syst., 138, 627–641 (2003).CrossRefGoogle Scholar
  4. 4.
    D. S. Chesley and J. H. Bevis, “Determinants for matrices over lattices,” Proc. Roy. Soc. Edinburgh, 68, 138–144 (1969).MathSciNetMATHGoogle Scholar
  5. 5.
    G. Grätzer, General Lattice Theory, Akademie, Berlin (1978).CrossRefGoogle Scholar
  6. 6.
    P. L. Hammer and S. Rudeanu, Méthodes booléenes en recherche opérationelle, Dunod, Paris (1970).Google Scholar
  7. 7.
    K. H. Kim and F. W. Roush, “Generalized fuzzy matrices,” Fuzzy Sets Syst., 4, 293–315 (1980).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    V. Poplavski, “On orientability and degeneration of Boolean binary relation on a finite set,” in: Math. Logic in Asia. Proc. 9th Asian Logic Conf., World Scientific Press, Singapore (2006), pp. 203–214.Google Scholar
  9. 9.
    V. B. Poplavsky, “Determinants for degrees of Boolean matrices,” Chebyshevskii Sb., 5, No. 3 (11), 98–111 (2004).Google Scholar
  10. 10.
    V. B. Poplavsky, “Oriented determinants for products of Boolean matrices,” in: Mathematics. Mechanics, Vol. 6, Izd. Saratovsk. Univ., Saratov (2004), pp. 111–114.Google Scholar
  11. 11.
    V. B. Poplavsky, “Volumes and determinants for degrees of transitive and reflexive Boolean relations on finite sets,” Izv. Tulsk. Gos. Univ. Ser. Matematika. Mekhanika. Informatika, 10, No. 1, 134–141 (2004).Google Scholar
  12. 12.
    V. B. Poplavsky, “On factorization for determinants of Boolean matrices,” Fundam. Prikl. Mat., 13, No. 4, 199–223 (2007).Google Scholar
  13. 13.
    V. B. Poplavsky, “On ranks, the Green classes and determinant theory for Boolean matrices,” Diskret. Mat., 20, No. 4, 42–60 (2008).CrossRefGoogle Scholar
  14. 14.
    P. L. Poplin and R. E. Hartwig, “Determinant identities over commutative semiring,” Linear Algebra Appl., 387, 99–132 (2004).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Ch. Reutenauer and H. Staubing, “Inversion of matrices over a commutative semiring,” J. Algebra, 88, No. 2, 350–360 (1984).MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    O. B. Sokolov, “Application of Boolean determinants to the analysis of logical switching circuits,” Uchen. Zap. Kazansk. Gos. Univ., 123, No. 6, 155–164 (1963).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Murmansk State Pedagogical UniversityMurmanskRussia

Personalised recommendations