Advertisement

Journal of Mathematical Sciences

, Volume 191, Issue 6, pp 757–763 | Cite as

Modelling of Ring Geometry from von Neumann’s Point of View

  • P. Gurtskaia
  • A. Lashkhi
Article
  • 33 Downloads

Abstract

The idea to consider different unions of points, lines, planes, etc., is rather old. Many important configurations of such kinds are geometric (or matroidal) lattices. In this work, we study Desargues, Pappus, and Pasch configurations in D-semimodular lattices.

Keywords

Projective Geometry Modular Lattice Principal Ideal Domain Geometric Lattice Ring Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Gurtskaia and A. Lashkhi, “Classical configurations in D-semimodular lattices,” Bull. Georgian Acad. Sci., 170, No. 1, 33–36 (2004).MathSciNetGoogle Scholar
  2. 2.
    S. Kemkhadze, “Geometries which are connected with general geometric lattices,” Bull. Georgian Acad. Sci., 158, No. 2, 183–184 (1998).MathSciNetMATHGoogle Scholar
  3. 3.
    S. Kemkhadze and Z. Rostomashvili, “General geometric lattices,” Bull. Georgian Acad. Sci., 158, No. 1, 14–17 (1998).MathSciNetMATHGoogle Scholar
  4. 4.
    T. Kvirikashvili and A. Lashkhi, “Affine geometry of modules over a ring with an invariant basis number,” J. Math. Sci., 137, No. 5, 5161–5173 (2006).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    A. A. Lashkhi, “Lattices with modular identity and Lie algebras,” J. Sov. Math., 38, No. 2, 1829–1853 (1987).CrossRefGoogle Scholar
  6. 6.
    A. Lashkhi, “Axiomatics of P1-projective geometry,” Soobshch. Akad. Nauk Gruz. SSR, 130, No. 1, 37–40 (1988).MathSciNetMATHGoogle Scholar
  7. 7.
    A. A. Lashkhi, “The fundamental theorem of projective geometry for modules and Lie algebras,” J. Sov. Math., 42, No. 5, 1991–2007 (1988).MATHCrossRefGoogle Scholar
  8. 8.
    A. A. Lashkhi, “General geometric lattices and projective geometry of modules,” J. Math. Sci., 74, No. 3, 1044–1077 (1995).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    A. Lashkhi, “Ring geometries and their related lattices,” Fundam. Prikl. Mat., 11, No. 3, 127–137 (2005).MathSciNetMATHGoogle Scholar
  10. 10.
    A. Lashkhi, “Coordinatization of PI-geometrical lattices,” Dokl. Ross. Akad. Nauk, 409, No. 2 (2006).Google Scholar
  11. 11.
    A. Lashkhi, P. Gurtskaia, and V. Sesadze, “Classical configurations in D-semimodular lattices,” Bull. Georgian Acad. Sci., 170, No. 1, 33–36 (2004).MathSciNetGoogle Scholar
  12. 12.
    F. Maeda and S. Maeda, Theory of Symmetric Lattices, Grundlehren Math. Wiss., 173, Springer- Verlag, New York–Berlin (1970).MATHCrossRefGoogle Scholar
  13. 13.
    J. von Neumann, Continuous Geometry, Princeton Univ. Press, Princeton, New Jersey (1960).MATHGoogle Scholar
  14. 14.
    P. Pálfy and C. Szabo, “Congruence varieties of groups and Abelian groups,” in: Lattice Theory and Its Applications (Darmstadt, 1991), Res. Exp. Math., 23, Heldermann, Lemgo (1995), pp. 163–183.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Georgian Technical UniversityTbilisiGeorgia

Personalised recommendations