Journal of Mathematical Sciences

, Volume 191, Issue 5, pp 709–717 | Cite as

Prime lattice matrices

  • V. E. Marenich


We consider properties of prime lattice matrices over the following lattices: chains, direct sums of chains, Boolean lattices.


Distributive Lattice Permutation Matrix Invertible Matrix Permutation Matrice Boolean Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Borosh, D. J. Hartfiel, and C. J. Maxson, “Answers to questions posed by Richman and Schneider,” Linear and Multilinear Algebra, 3, 255–258 (1976).MathSciNetCrossRefGoogle Scholar
  2. 2.
    D. de Caen, Prime Boolean Matrices, M.Sci. Thesis, Queen’s Univ., Kingston, Ontario (1979).Google Scholar
  3. 3.
    D. de Caen and D. A. Gregory, “Prime Boolean matrices,” in: Combinatorial Mathematics VII. Proc. 7th Aust. Conf., Newcastle, Aust. 1979, Lect. Notes Math., Vol. 829, Springer, Berlin (1980), pp. 76–82.Google Scholar
  4. 4.
    D. de Caen and D. A. Gregory, “Primes in the semigroup of Boolean matrices,” Linear Algebra Appl., 37, 119–134 (1981).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    H. H. Cho, “Prime Boolean matrices and factorizations,” Linear Algebra Appl., 190, 87–98 (1993).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    H. H. Cho, “Permanents of prime Boolean matrices,” Bull. Korean Math. Soc., 35, No. 3, 605–613 (1998).MathSciNetMATHGoogle Scholar
  7. 7.
    H. M. Devadze, “Generating sets of semigroups of all binary relations in a finite set,” Dokl. Akad. Nauk BSSR, 12, 765–768 (1968).MathSciNetMATHGoogle Scholar
  8. 8.
    J. Giveon, “Lattice matrices,” Inform. Control, 7, 477–484 (1964).MathSciNetCrossRefGoogle Scholar
  9. 9.
    D. A. Gregory and N. J. Pullman, “Prime Boolean matrices, a graph theoretic approach,” Ars Combinatoria, 12, 81–110 (1981).MathSciNetMATHGoogle Scholar
  10. 10.
    D. A. Gregory and N. J. Pullman, “Semiring rank: Boolean rank and nonnegative rank factorization,” J. Combin. Inform. Syst. Sci., 8, No. 3, 223–233 (1983).MathSciNetMATHGoogle Scholar
  11. 11.
    K. H. Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York (1982).MATHGoogle Scholar
  12. 12.
    V. E. Marenich, “Prime lattice matrices over distributive lattices,” J. Math. Sci., 164, No. 2, 260–271 (2010).MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. J. Richman and H. Schneider, “Primes in the semigroup of nonnegative matrices,” Linear and Multilinear Algebra, 2, 135–140 (1974).MathSciNetCrossRefGoogle Scholar
  14. 14.
    V. N. Sachkov and V. E. Tarakanov, Combinatorics of Nonnegative Matrices [in Russian], TVP, Moscow (2000).Google Scholar
  15. 15.
    L. A. Skornyakov, “Invertible matrices over distributive lattices,” Sib. Mat. Zh., 27, No. 2, 182–185 (1986).MathSciNetMATHGoogle Scholar
  16. 16.
    M. Tchuente, On the Decomposition of Boolean Matrices, Univ. of Grenoble, Grenoble, France (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Murmansk State Pedagogical UniversityMurmanskRussian

Personalised recommendations