Journal of Mathematical Sciences

, Volume 191, Issue 3, pp 464–469 | Cite as

Well-posedness of dirichlet and poincaré problems for the multidimensional gellerstedt equation

  • T. T. Sheriyazdan

We prove the well-posedness of the Dirichlet and Poincaré problems for the multidimensional Gellerstedt equation in a domain with deviation from a characteristic.


Cauchy Problem Kazakhstan Hyperbolic Equation Singular Integral Spherical Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Bitsadze, Equations of Mixed Type [in Russian], Academy of Sciences of the USSR, Moscow (1959).Google Scholar
  2. 2.
    A. V. Bitsadze, Some Classes of Partial Differential Equations [in Russian], Nauka, Moscow (1981).Google Scholar
  3. 3.
    S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  4. 4.
    T. T. Sheriyazdan, “Well-posedness of Dirichlet and Poincaré problems for a multidimensional wave equation,” Vestn. Kazan. Nats. Tekhnol. Univ., No. 1 (2009).Google Scholar
  5. 5.
    S. A. Aldashev, Boundary-Value Problems for Multidimensional Hyperbolic and Mixed Equations [in Russian], Gylym, Almaty (1994).Google Scholar
  6. 6.
    S. A. Aldashev, Degenerate Multidimensional Hyperbolic Equations [in Russian], ZKATU, Oral (2007).Google Scholar
  7. 7.
    V. A. Tersenov, Introduction to the Theory of Equations Degenerating on the Boundary [in Russian], Novosibirsk State University, Novosibirsk (1973).Google Scholar
  8. 8.
    A. M. Nakhushev, Equations of Mathematical Biology [in Russian], Vysshaya Shkola, Moscow (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Zhubanov Aktyubinsk State UniversityAktobeKazakhstan

Personalised recommendations