Journal of Mathematical Sciences

, Volume 191, Issue 2, pp 162–177 | Cite as

Reachable sets of a Lamé type dynamical system


By a version of the boundary control method (Belishev, 1986), a Riemannian manifold is recovered via its dynamical boundary inverse data, which correspond to the scalar wave equation, with the help of the virtual sources. We extend this version to the dynamical vector Lamé-type system. Such an extension is based on studying the structure of the reachable sets. The prospective goal of our study is to solve the inverse problem of recovering parameters of the Lamé system from the dynamical boundary data. Bibliography: 13 titles. Illustrations: 3 figures.


Inverse Problem Riemannian Manifold Type System Boundary Control Virtual Source 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. I. Belishev, “Determination of distances to a virtual source through dynamical boundary data” [in Russian], Zap. Nauchn. Semin. POMI 393, 29–45 (2011); English transl.: J. Math. Sci., New York 185, No. 4, 526–535 (2012).MathSciNetGoogle Scholar
  2. 2.
    M. I. Belishev, “Recent progress in the boundary control method” Inverse Probl. 23, No. 5, R1–R67 (2007).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    M. I. Belishev, “On the reconstruction of a Riemannian manifold from boundary data: the theory and plan of a numerical experiment” [in Russian], Zap. Nauchn. Semin. POMI 380, 8–30 (2010); English transl.: J. Math. Sci., New York 175, No. 6, 623–636 (2011).Google Scholar
  4. 4.
    M. I. Belishev and M. N. Demchenko, “Time-optimal reconstruction of Riemannian manifold via boundary electromagnetic measurements”, J. Inverse Ill-Posed Probl. 19, No. 2, 167–188 (2011).MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. I. Belishev, “Dynamical inverse problem for a Lamé type system”, J. Inverse Ill-Posed Probl. 14, No. 8, 751–766 (2006).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow [in Russian], Nauka, M. (1970); English transl.: Gordon and Breach, New York (1964).Google Scholar
  7. 7.
    O. A. Ladyzhenskaya and V. A. Solonnikov, “The linearization principle and invariant manifolds for problems of magnetohydrodynamics” [in Russian], Zap. Nauchn. Semin. LOMI 38, 46–93 (1973); English transl.: —textbfJ. Math. Sci., New York 8, 384–422 8 (1977).MATHGoogle Scholar
  8. 8.
    V. G. Fomenko, “The reaction operator of the Lamé system” [in Russian], Skladn. Sist. Protses. No. 1, 13–18 (2010).Google Scholar
  9. 9.
    M. I. Belishev and I. Lasiecka, “The dynamical Lamé system: regularity of solutions, boundary controllability and boundary data continuation,” ESAIM, Control, Optim. Calc. Var. 8, 143–167 (2002).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    M. Eller, V. Isakov, G. Nakamura, and D. Tataru, “Uniqueness and stability in the Cauchy problem for Maxwell’s and elasticity systems”, In: Nonlinear Partial Differential Equations and Their Applications, pp. 329–349, Elsevier, Amsterdam (2002).Google Scholar
  11. 11.
    M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Probl. 13, No. 5, R1–R45 (1997).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    M. I. Belishev and A. S. Blagoveschenskii, Dynamical Inverse Problems un the Wave Theory [in Russian], St.-Petersb. State Univ. Press, St.-Petersb. (1999).Google Scholar
  13. 13.
    M. Eller, “Symmetric hyperbolic systems with boundary conditions that do not satisfy the Kreiss–Sakamoto condition”, Appl. Math. 35, No. 3, 323–333 (2008).MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.V. A. Steklov Institute of Mathematics RASSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations