Journal of Mathematical Sciences

, Volume 190, Issue 6, pp 835–847 | Cite as

Approximate solution of an inverse scattering problem for a plane dielectric structure with perfectly conducting base

  • Z. T. Nazarchuk
  • A. T. Synyavskyy

An approach is proposed for the approximate solution of an inverse scattering problem for the plane electromagnetic wave incidence on a plane layered dielectric with a perfectly conducting substrate at the base. It is shown that this inverse scattering problem is identical to the inverse scattering problem for a purely dielectric layered structure when the values of impulse response on a limited interval are taken as initial data. This interval corresponds to the time of plane wave propagation in dielectric media without interaction with a perfectly conducting substrate. The parameters of approximation models of the impulse response are determined by methods of spectral analysis from the values of the reflection coefficient given in a limited frequency range.


Inverse Problem Reflection Coefficient Dielectric Permittivity Pulse Response Dielectric Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Gel’fand and B. M. Levitan, “On the determination of a differential equation by its spectral function,” Izv. Akad. Nauk SSSR, Ser. Mat., 15, No. 4, 309–360 (1951).MathSciNetGoogle Scholar
  2. 2.
    V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of wave in nonlinear media,” Zh. _ksp. Teor. Fiz., 61, No. 1, 118–134 (1971); English translation: J. Exp. Theor. Phys., 34, No. 1, 62–69 (1972).MathSciNetGoogle Scholar
  3. 3.
    M. A. Lavrent’ev and B. V. Shabat, Methods of the Theory of Functions of Complex Variable [in Russian], Nauka, Moscow (1973).Google Scholar
  4. 4.
    V. A. Marchenko, Sturm–Liouville Operators and Their Applications [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  5. 5.
    Z. T. Nazarchuk and A. T. Synyavs’kyi, “Approximation of the solution of inverse problem of scattering of electromagnetic waves on plane dielectrics,” Fiz.-Khim. Mekh. Mater., 47, No. 1, 7–17 (2011); English translation: Mater. Sci., 47, No. 1, 1–13 (2011).Google Scholar
  6. 6.
    Z. T. Nazarchuk and A. T. Synyavskyy, “Determination of multilayer structure parameters by means of reconstruction of scattering matrix from known reflection coefficients,” Radiofiz. Radioastron., 15, No. 3, 295–313 (2010); English translation: Radio Phys. Radio Astron., 15, No. 3, 295–313 (2010).Google Scholar
  7. 7.
    A. T. Synyavskyy and M. Shahin, “High-resolution recovering of discontinuities of permittivity profile from band-limited reflection measurements,” Vidb. Obrob. Inform., Issue 29(105), 10–20 (2009).Google Scholar
  8. 8.
    M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems,” Stud. Appl. Math., 53, No. 4, 249–315 (1974).MathSciNetGoogle Scholar
  9. 9.
    S. Albeverio, R. Hryniv, and Ya. Mykytyuk, “Inverse scattering for discontinuous impedance Schrödinger operators: a model example,” J. Phys., Ser. A: Math. Theor., 44, No. 34 (2011); doi: 10.1088/1751-8113/44/34/345204.
  10. 10.
    R. Burridge, “The Gelfand–Levitan, the Marchenko, and the Gopinath–Sondhi integral equations of inverse scattering theory, regarded in the context of inverse impulse-response problems,” Wave Motion, 2, No. 4, 305–323 (1980).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    R. P. Gilbert, K. Hackl, and Y. Xu, “Inverse problem for wave propagation in a perturbed layered half-space,” Math. Comput. Model., 45, No. 1-2, 21–33 (2007).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    G. M. L. Gladwell, Inverse Problems in Scattering: An Introduction, Kluwer, Dordrecht (1993).MATHCrossRefGoogle Scholar
  13. 13.
    M. Jaulent, “The inverse scattering problem for LCRG transmission lines,” J. Math. Phys., 23, No. 12, 2286–2290 (1982).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    S. M. Kay, Fundamentals of Statistical Signal Processing. Estimation Theory, Prentice Hall, Englewood Cliffs, NJ (1993).MATHGoogle Scholar
  15. 15.
    E. Ya. Khruslov and D. G. Shepelsky, “Inverse scattering method in electromagnetic sounding theory,” Inverse Probl., 10, No. 1, 1–37 (1994).MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    R. G. Newton, “Inversion of reflection data for layered media: a review of exact methods,” Geophys. J. Roy. Astr. Soc., 65, No. 1, 191–215 (1981).MATHCrossRefGoogle Scholar
  17. 17.
    R. Pike and P. Sabatier, Scattering and Inverse Scattering in Pure and Applied Science, Academic Press, San Diego (2002).MATHGoogle Scholar
  18. 18.
    R. Solimene, R. Barresi, and G. Leone, “Localizing a buried planar perfect electric conducting interface by multi-view data,” J. Opt., Ser. A: Pure Appl. Opt., 10, No. 1, 1–11 (2008).Google Scholar
  19. 19.
    P. Stoica and R. Moses, Spectral Analysis of Signals, Prentice Hall, Upper Saddle River, NJ (2005).Google Scholar
  20. 20.
    H. Zhang, S. Y. Tan, and H. S. Tan, “An improved method for microwave nondestructive dielectric measurement of layered media,” Progr. Electromagn. Res., Ser. B, 10, 145–161 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Z. T. Nazarchuk
    • 1
  • A. T. Synyavskyy
    • 1
  1. 1.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations