Journal of Mathematical Sciences

, Volume 190, Issue 1, pp 34–65 | Cite as

Spectral analysis and correct solvability of abstract integrodifferential equations arising in thermophysics and acoustics

  • V. V. Vlasov
  • N. A. Rautian
  • A. S. Shamaev


In the present paper, we study integrodifferential equations with unbounded operator coefficients in Hilbert spaces. The principal part of the equation is an abstract hyperbolic equation perturbed by summands with Volterra integral operators. These equations represent an abstract form of the Gurtin–Pipkin integrodifferential equation describing the process of heat conduction in media with memory and the process of sound conduction in viscoelastic media and arise in averaging problems in perforated media (the Darcy law).

The correct solvability of initial-boundary problems for the specified equations is established in weighted Sobolev spaces on a positive semiaxis.

Spectral problems for operator-functions are analyzed. Such functions are symbols of these equations. The spectrum of the abstract integrodifferential Gurtin–Pipkin equation is investigated.


Hardy Space Asymptotic Representation Laplace Transformation Real Zero Unbounded Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Avdonin and S. A. Ivanov, Families of Exponentials. Method of Moments in Contrallability Problems for Distributed Parameter Systems, Cambridge Univ. Press, Cambridge (1995).Google Scholar
  2. 2.
    M. A. Biot, “Generalized theory of acoustic propagation in porous dissipative media,” J. Acoust. Soc. Am., 34, 1254–1264 (1962).MathSciNetCrossRefGoogle Scholar
  3. 3.
    G. Di Blasio, “Parabolic Volterra equations of convolution type,” J. Integral Equ. Appl., 6, 479–508 (1994).MATHCrossRefGoogle Scholar
  4. 4.
    G. Di Blasio, K. Kunisch, and E. Sinestari, “L 2–regularity for parabolic partial integrodifferential equations with delays in the highest order derivatives,” J. Math. Anal. Appl., 102, 38–57 (1984).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    G. Di Blasio, K. Kunisch, and E. Sinestari, “Stability for abstract linear functional differential equations,” Israel J. Math., 50, No. 3, 231–263 (1985).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    W. Desch and R. K. Miller, “Exponential stabilization of Volterra integrodifferential equations in Hilbert space,” J. Differ. Equ., 70, 366–389 (1987).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    M. E. Gurtin and A. C. Pipkin, “Theory of heat conduction with finite wave speed,” Arch. Rat. Mech. Anal., 31, 113–126 (1968).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    S. A. Ivanov, “Wave type spectrum of the Gurtin–Pipkin equation of the second order,”
  9. 9.
    S. Ivanov and L. Pandolfi, “Heat equations with memory: lack of controllability to the rest,” J. Math. Anal. Appl., 355, 1–11 (2009).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    S. A. Ivanov and T. L. Sheronova, “Spectrum of the heat equation with memory,”
  11. 11.
    N. D. Kopachevsky and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics. Vol. 2. Nonself–Adjoint Problems for Viscous Fluids, Birkhäuser, Basel (2003).Google Scholar
  12. 12.
    D. A. Kosmodemyanskii and D. A. Shamaev, “On some spectral problems in porous media filled with a liquid,” J. Math. Sci., 149, No. 6, 1678–1700 (2008).MathSciNetGoogle Scholar
  13. 13.
    K. Kunisch and M. Mastinsek, “Dual semigroups and structual operators for partial differential equations with unbounded operators acting on the delays,” Differ. Integral Equ., 3, No. 3, 733–756 (1990).MathSciNetMATHGoogle Scholar
  14. 14.
    K. Kunisch and W. Shappacher, “Necessary conditions for partial differential equations with delay to generate l 0–semigroup,” J. Differ. Equ., 50, 49–79 (1983).MATHCrossRefGoogle Scholar
  15. 15.
    J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vols. I–III, Springer-Verlag, Berlin–Heidelberg–New York (1973).Google Scholar
  16. 16.
    A. V. Lykov, The Problem of Heat and Mass Transfer [in Russian], Nauka i Tekhnika Minsk (1976).Google Scholar
  17. 17.
    A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Am. Math. Soc., Providence, Rhode Island (1988).Google Scholar
  18. 18.
    D. A. Medvedev, V. V. Vlasov, and J. Wu, “Solvability and structural properties of abstract neutral functional differential equations,” J. Funct. Differ. Equ., 15, Nos. 3–4, 249–272 (2008).MathSciNetMATHGoogle Scholar
  19. 19.
    A. Meirmanov, “Acoustic and filtration properties of a thermoelastic porous medium: Biot’s equations of thermo-poroelasticity,” Sb. Math., 3, 1–24 (2008).MathSciNetGoogle Scholar
  20. 20.
    V. P. Mikhaylov, Partial Differential Equations [in Russian], Nauka, Moscow (1976).Google Scholar
  21. 21.
    S. G. Mikhlin, Linear Partial Differential Equations [in Russian], Vysshaya Shkola, Moscow (1977).Google Scholar
  22. 22.
    R. K. Miller, “Volterra integral equation in Banach space,” Funkcial. Ekvac., 18, 163–194 (1975).MathSciNetMATHGoogle Scholar
  23. 23.
    R. K. Miller, “An integrodifferential equation for rigid heat conductors with memory,” J. Math. Anal. Appl., 66, 313–332 (1978).MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    R. K. Miller and R. L. Wheeler, “Well-posedness and stability of linear Volterra interodifferential equations in abstract spaces,” Funkcial. Ekvac., 21, 279–305 (1978).MathSciNetMATHGoogle Scholar
  25. 25.
    A. I. Miloslavskiy, Spectral properties of operator pencil arising in viscoelasticity [in Russian], preprint, Kharkov (1987).Google Scholar
  26. 26.
    G. Nguetseng, “A general convergence result for a functional related to the theory of homogenezation,” SIAM J. Math. Anal., 21, No. 6, 1396–1414 (1990).MathSciNetCrossRefGoogle Scholar
  27. 27.
    V. V. Palin, and E. V. Radkevich, “Hyperbolic regularizations of conservation laws,” Russ. J. Math. Phys., 15, No. 3, 343–363 (2008).MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    L. Pandolfi, “The controllability of the Gurtin–Pipkin equations: a cosine operator approach,” Appl. Math. Optim., 52, 143–165 (2005).MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    E. Sances Palensia, Nonhomogeneous Media and Oscillation Theory, Mir, Moscow (1984).Google Scholar
  30. 30.
    G. V. Sandrakov, “Spectral properties of homogenized diffusion models in a strongly inhomogeneous medium,” Dokl. Math., 74, No. 3, 815–818 (2006).MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    G. V. Sandrakov, “Multiphase homogenized diffusion models for problems with several parameters,” Izv. Math., 71, No. 6, 1193–1252 (2007).MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    V. V. Vlasov, On some spaces of vector-functions holomorphyc in an angle [in Russian], Preprint, Moscow (1981)Google Scholar
  33. 33.
    V. V. Vlasov, “On solvability and properties of solutions of functional differential equations in a Hilbert space,” Sb. Math., 186, No. 8, 1147–1172 (1995).MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    V. V. Vlasov, “On the solvability and estimates of solutions to functional-differential equations in Sobolev spaces,” Proc. Steklov Inst. Math., 227, 104–115 (1999).MathSciNetGoogle Scholar
  35. 35.
    V. V. Vlasov, “On the correct solvability of abstract parabolic equations with aftereffect,” Dokl. Math., 76, No. 1, 511–513 (2007).MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    V. V. Vlasov, A. A. Gavrikov, S. A. Ivanov, D. Yu. Knyaz’kov, V. A. Samarin, and A. S. Shamaev “Spectral properties of combined media,” J. Math. Sci., 164, No. 6, 948–963 (2009).MathSciNetCrossRefGoogle Scholar
  37. 37.
    V. V. Vlasov and D. A. Medvedev, “Functional-differential equations in Sobolev spaces and related problems in spectral theory,” J. Math. Sci., 164, No. 5, 653–841 (2008).MathSciNetGoogle Scholar
  38. 38.
    V. V. Vlasov, and N. A. Rautian “Correct solvability and spectral analysis of abstract hyperbolic integrodifferential quaitons,” Tr. Sem. im. Petrovskogo, to appear.Google Scholar
  39. 39.
    V. V. Vlasov, N. A. Rautian, and A. S. Shamaev, “Solvability and spectral analysis of integrodifferential equations arising in the theory of heat transfer and acoustics,” Dokl. Math., 82, No. 2, 684–687 (2010).MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    V. V. Vlasov and K. I. Shmatov, “Correct solvability of hyperbolic-type equations with aftereffect in a Hilbert space,” Proc. Steklov Inst. Math., 243, 120–130 (2003).MathSciNetGoogle Scholar
  41. 41.
    V. V. Vlasov and J. Wu, “Solvability and spectral analysis of abstract hyperbolic equations with delay,” Funct. Differ. Equ., 16, No. 4, 751–768 (2009).MathSciNetMATHGoogle Scholar
  42. 42.
    V. V. Vlasov and J. Wu, “Spectral analysis and solvability of abstract hyperbolic equations with aftereffect,” Differ. Equ., 45, No. 4, 539–548 (2009).MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    V. V. Vlasov, J. Wu, and G. R. Kabirova, and “Correct solvability and the spectral properties of abstract hyperbolic equations with aftereffect,” J. Math. Sci., 170, No. 3, 388–404 (2010).MathSciNetCrossRefGoogle Scholar
  44. 44.
    J. Wu, “Semigroup and integral form of class of partial differential equations with infinite delay,” Differ. Integral Equ., 4, No. 1, 1325–1351 (1991).MATHGoogle Scholar
  45. 45.
    J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York (1996).MATHCrossRefGoogle Scholar
  46. 46.
    K. Yoshida, Functional Analysis [Russian translation], IL, Moscow (1967).Google Scholar
  47. 47.
    V. V. Zhikov, “On an extension of the method of two-scale convergence and its applications,” Sb. Math., 191, No. 7, 973–1014 (2000).MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    V. V. Zhikov, “On two-scale convergence,” J. Math. Sci., 120, No. 3, 1328–1352 (2004).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Moscow Lomonosov State University, Faculty of Mechanics and MathematicsMoscowRussia
  2. 2.Russian Plekhanov Academy of Economics Faculty of Economics and MathematicsMoscowRussia

Personalised recommendations