Journal of Mathematical Sciences

, Volume 189, Issue 1, pp 10–67 | Cite as

Transferred characteristic classes and generalized cohomology rings



In this paper, we study the interaction between transferred Chern classes and Chern classes of transferred bundles. We calculate the algebra \( B{P^{*}}\left( {X_{{h\varSigma p}}^p} \right) \) and show that its multiplicative structure is completely determined by the Frobenius reciprocity. We also give some tables of the initial segments of the formal group law in the Morava K-theory which are often useful in calculations.


Line Bundle Spectral Sequence Chern Class Double Covering Euler Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Adams, Infinite Loop Spaces, Ann. Math. Stud., Princeton Univ. Press, Princeton (1978).Google Scholar
  2. 2.
    M. F. Atiyah, “Characters and cohomology of finite groups,” Publ. Math. I.H.E.S., 9, 23–64 (1961).MathSciNetGoogle Scholar
  3. 3.
    M. Bakuradze, “Morava K-theory rings for the modular groups in Chern classes,” K-theory, 38, No. 2, 87–94 (2008).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    M. Bakuradze and S. Priddy, “Transfer and complex oriented cohomology rings,” Alg. Geom. Topol., 3, 473–509 (2003).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    M. Bakuradze and S. Priddy, “Transferred Chern classes in Morava K-theory,” Proc. Am. Math. Soc., 132, 1855–1860 (2004).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    M. Bakuradze and V. Vershinin, “Morava K-theory rings for the dihedral, semidihedral, and generalized quaternion groups in Chern classes,” Proc. Am. Math. Soc., 134, 3707–3714 (2006).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    M. Bakuradze, M. Jibladze, and V. Vershinin, “Characteristic classes and transfer relations in cobordisms,” Proc. Am. Math. Soc., 131 No. 6, 1935–1942 (2003).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    M. Bakuradze and R. Nadiradze, “Cohomological realizations of two-valued formal groups and their application,” Proc. Tbilisi A. Razmadze Math. Inst., 94, 12–28 (1991).MathSciNetGoogle Scholar
  9. 9.
    J. C. Becker and D. H. Gottlieb, “The transfer map and fibre bundles,” Topology, 14, 1–12 (1975).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    J. C. Becker and R. E. Schultz, “Axioms for bundle transfers and traces,” Math. Z., 227, No. 4, 583–605 (1998).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    J. M. Boardman, Stable Homotopy Theory, Univ. of Warwick (1966).Google Scholar
  12. 12.
    M. Brunetti, “Morava K-theory of p-groups with cyclic maximal subgroups and other related p-groups,” K-Theory, 24, 385–395 (2001).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    K. S. Brown, Cohomology of Groups, Grad. Texts Math., 87, Springer-Verlag, Berlin (1982).Google Scholar
  14. 14.
    V. M. Buchstaber, “Characteristic classes in cobordisms and topological applications of theories of one- and two-valued formal groups,” in: Itogi Nauki Tekh., 10, VINITI, Moscow (1977), pp. 5–178.Google Scholar
  15. 15.
    H. Cartan and S. Eilenberg, Homological Algebra, Princeton Math. Ser., 19, Princeton Univ. Press, Princeton (1956).Google Scholar
  16. 16.
    T. tom Dieck, “Transformation groups and representation theory,” Lect. Notes Math., 766 (1979).Google Scholar
  17. 17.
    A. Dold, “The fixed point transfer of fibre-preserving maps,” Math. Z., 148, 215–244 (1976).MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    M. Feshbach, “The transfer and compact Lie groups,” Trans. Am. Math. Soc., 251, 139–169 (1979).MathSciNetCrossRefGoogle Scholar
  19. 19.
    V. G. Gorbunov, “Symplectic cobordism of projective spaces,” Math. Sb., 181, 506–520 (1990).MATHGoogle Scholar
  20. 20.
    V. G Gorbunov and N. Ray, “Orientation of Spin(n) bundles and symplectic cobordism,” Publ. RIMS Kyoto Univ., 28, No. 1, 39–55 (1992).MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    M. Hazewinkel, “Constructing formal groups, III. Applications to complex cobordism and Brown–Peterson cohomology,” J. Pure Appl. Algebra, 10, 1–18 (1977/78).MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    F. Hirzebruch, T. Berger, and R. Jung, Manifolds and Modular Forms, Asp.Math., E20, Friedrich Vieweg & Sohn, Braunschweig (1992).Google Scholar
  23. 23.
    M. Hopkins, N. Kuhn, and D. Ravenel, “Generalized group characters and complex oriented cohomology theories,” J. Am. Math. Soc., 13, No. 3, 553–594 (2000).MathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Hunton, “The Morava K-theories of wreath products,” Math. Proc. Cambridge Philos. Soc., 107, 309–318 (1990).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    J. Hunton, “The complex oriented cohomology of extended powers,” Ann. Inst. Fourier, Grenoble, 48, No. 2, 517–534 (1998).MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    M. Imaoka, “Symplectic Pontryagin numbers and homotopy groups of MSp(N),” Hiroshima Math. J., 12, No. 1, 151–181 (1982).MathSciNetMATHGoogle Scholar
  27. 27.
    D. S. Kahn and S. B. Priddy, “Applications of the transfer to stable homotopy theory,” Bull Am. Math. Soc., 78, 981–987 (1972).MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    I. Kriz, “Morava K-theory of classifying spaces: Some calculations,” Topology, 36, 1247–1273 (1997).MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    R. Nadiradze, “Characteristic classes in the SC *-theory and their applications,” in: Proc. Int. Topol. Conf. Baku (1987); Preprint Razmadze Math. Inst., Tbilisi (1991); Preprint No. 58, Heidelberg (1993).Google Scholar
  30. 30.
    D. Quillen, “Elementary proofs of some results of cobordism 1theory using Steenrod operations,” Adv. Math., 7, 29–56 (1971).MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    D. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, Orlando, Florida (1986).MATHGoogle Scholar
  32. 32.
    N. Ray, “Indecomposables in TorsMSp*,” Topology, 10, 261–270 (1971).MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    N. Ray, “Some results in generalised homology, K-theory, and bordism,” Proc. Cambridge Philos. Soc., 71, 283–300 (1977).CrossRefGoogle Scholar
  34. 34.
    F. W. Roush, “On some torsion classes in symplectic bordism,” unpublished.Google Scholar
  35. 35.
    B. Schuster, “On the Morava K-theory of some finite 2-groups,” Math. Proc. Cambridge Philos. Soc., 121, 7–13 (1997).MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    M. Tezuka and N. Yagita, “Cohomology of finite groups and Brown–Peterson cohomology, II,” in: Homotopy Theory and Related Topics (Kinosaki, 1988), Lect. Notes Math., 1418, Springer-Verlag, Berlin (1990), pp. 57–69.Google Scholar
  37. 37.
    V. V. Vershinin, “Computation of the symplectic cobordism ring in dimensions less than 32 and the non-triviality of the majority of the triple products of Ray’s elements,” Sib. Mat. Zh., 24, 50–63 (1983).MathSciNetCrossRefGoogle Scholar
  38. 38.
    U. Würgler, “Commutative ring spectra in characteristic 2,” Commun. Math. Helv., 61, 33–45 (1986).MATHCrossRefGoogle Scholar
  39. 39.
    N. Yagita, “Complex K-theory of BSL 3(Z),” K-Theory, 6, 87–95 (1992).MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    N. Yagita, “Note on BP-theory for extensions of cyclic groups by elementary abelian p-groups,” Kodai Math. J., 20, No. 2, 79–84 (1997).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Razmadze Mathematical InstituteTbilisiGeorgia

Personalised recommendations