Skip to main content
Log in

Local stability in the problem of identifying coefficients of a linear difference equation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider linear matrix difference equations used in control problems and obtain quantitative characteristics of the local stability of optimal estimates. Bibliography: 25 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA (1996).

    Book  MATH  Google Scholar 

  2. M. Aoki and P. C. Yue, “On a priori error estimates of some identification methods,” IEEE Trans. Automat. Control. 15, No. 5, 541–548 (1970).

    Article  MathSciNet  Google Scholar 

  3. S. van Huffel and J. Vandewalle, The Total Least Squares Problem, SIAM, Philadelphia, PA (1991).

    Book  MATH  Google Scholar 

  4. T. J. Abatzoglou, J. M. Mendel, and G. A. Harada, “The constrained total least squares technique and its applications to harmonic superresolution,” IEEE Trans. Signal Process. 39, No. 5, 1070–1087 (1991).

    Article  MATH  Google Scholar 

  5. A. A. Lomov, “Orthoregressive methods for estimating parameters and problems of separating trends in linear systems” [in Russian], Differ. Urav. Proc. Upr. No. 2, 1–86 (2005).

  6. A. A. Lomov, “On quatitative a priori degree of identifiability of parameters of a linear system” [in Russian], In: Proc. VIII Intern. Conf. “Identificaion of systems and control problems”, Moscow, 2009, pp. 479–491. Moscow (2009).

  7. W. A. Fuller, Measurement Error Models, John Wiley & Sons, Chichester (1987).

    Book  MATH  Google Scholar 

  8. A. A. Lomov, “Orthoregressive estimates for parameters of systems of linear difference equations” [in Russian], Sib. Zh. Ind. Mat. 8, No. 3, 102–119 (2005); English transl.: J. Appl. Industr. Math. 1, No. 1. 59–76 (2007).

    Article  Google Scholar 

  9. M. R. Osborne, “A class of nonlinear regression problems,” Data Represent., Proc. Semin. Aust. nat. Univ. 94–101. (1970).

  10. A. O. Egorshin, “Numerical closed methods of identification of linear objects” [in Russian], In: Optimal and Self-Adjusting Systems, pp. 40–53, Novosibirsk (1971).

  11. B. Roorda, “Algorithms for global total least squares modelling of finite multivariable time series,” Automatica 31, No. 3, 391–404 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. O. Egorshin, “Optimization of parameters of stationary models in a unitary space” [in Russian], Avtom. Telemekh. No. 12, 29–48 (2004); English transl.: Autom. Remote Control 65, No. 12, 1885–1903 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. G. Demidenko, “Recovery of parameters of a homogeneous linear model” [in Russian], Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 8, No. 3, 51–59 (2008).

    MathSciNet  MATH  Google Scholar 

  14. M. Aoki and P. C. Yue, “On the certain convergence questions in system identification,” SIAM J. Control. 8, No. 2. 239–256 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  15. B. G. Vorchik, “Identifiability of linear parametric stochastic systems. I. II” [in Russian], Avtom. Telemekh., No. 5, 64–78; No. 7, 96–109 (1985); English transl.: Autom. Remote Control 46, 596–609; 867–878 (1985).

    MATH  Google Scholar 

  16. A. A. Lomov, “Identification of linear dynamic systems by short parts of transients with additive measUring disturbances” [in Russian], Izv. Akad. Nauk, Teor. Sist. Upr. No. 3, 20–26 (1997); English transl.: J. Comput. Syst. Sci. Int. 36, No. 3, 346–352 (1997).

    MATH  Google Scholar 

  17. A. A. Lomov, “Distinguishability conditions for stationary linear systems” [in Russian], Differ. Uravn. 39, No. 2, 261–266 (2003); English transl.: Differ Equ. 39, No. 2, 283–288 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. A. Lomov, “On identifiability of stationary linear systems with coefficients that depend on a parameter” [in Russian], Sib. Zh. Ind. Mat. 6, No. 4 (16), 60–66 (2003).

    MathSciNet  MATH  Google Scholar 

  19. C. Lanczos, Practical Methods of Applied Analysis [Russian translation], Fiz. Mat. Lit., Moscow (1961).

    Google Scholar 

  20. V. I. Kostin, “On extremum points of one function” [in Russian], Upr. Syst. 24, 35–42 (1984).

    MathSciNet  Google Scholar 

  21. G. K. Smyth, “Employing symmetry constraints for improved frequency estimation by eigenanalysis methods” Technometrics 42, 277–289 (2000).

    Article  Google Scholar 

  22. A. A. Lomov, “Minimal descriptions of stationary linear models” [In Russian], Models. Method. Optimiz. 28 91–117 (1994).

    MathSciNet  Google Scholar 

  23. L. Schwartz, Analysis. I, II [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  24. P. Lancaster, Theory of Matrices, Academic Press. New York etc. (1969).

    MATH  Google Scholar 

  25. L. Mirsky, “Symmetric gauge functions and unitarily invariant norms,” Quart. J. Math. Oxf. II. Ser. 11, 50–59 (1960).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lomov.

Additional information

Translated from Vestnik Novosibirskogo Gosudarstvennogo Universiteta: Seriya Matematika, Mekhanika, Informatika 10, No. 4, 2010, pp. 82–104

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomov, A.A. Local stability in the problem of identifying coefficients of a linear difference equation. J Math Sci 188, 410–434 (2013). https://doi.org/10.1007/s10958-012-1138-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-1138-z

Keywords

Navigation