Journal of Mathematical Sciences

, Volume 188, Issue 4, pp 410–434 | Cite as

Local stability in the problem of identifying coefficients of a linear difference equation

  • A. A. Lomov

We consider linear matrix difference equations used in control problems and obtain quantitative characteristics of the local stability of optimal estimates. Bibliography: 25 titles.


Local Stability Polynomial Matrix Linear Difference Equation Unitarily Invariant Norm Stationary Linear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA (1996).CrossRefMATHGoogle Scholar
  2. 2.
    M. Aoki and P. C. Yue, “On a priori error estimates of some identification methods,” IEEE Trans. Automat. Control. 15, No. 5, 541–548 (1970).MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. van Huffel and J. Vandewalle, The Total Least Squares Problem, SIAM, Philadelphia, PA (1991).CrossRefMATHGoogle Scholar
  4. 4.
    T. J. Abatzoglou, J. M. Mendel, and G. A. Harada, “The constrained total least squares technique and its applications to harmonic superresolution,” IEEE Trans. Signal Process. 39, No. 5, 1070–1087 (1991).CrossRefMATHGoogle Scholar
  5. 5.
    A. A. Lomov, “Orthoregressive methods for estimating parameters and problems of separating trends in linear systems” [in Russian], Differ. Urav. Proc. Upr. No. 2, 1–86 (2005).Google Scholar
  6. 6.
    A. A. Lomov, “On quatitative a priori degree of identifiability of parameters of a linear system” [in Russian], In: Proc. VIII Intern. Conf. “Identificaion of systems and control problems”, Moscow, 2009, pp. 479–491. Moscow (2009).Google Scholar
  7. 7.
    W. A. Fuller, Measurement Error Models, John Wiley & Sons, Chichester (1987).CrossRefMATHGoogle Scholar
  8. 8.
    A. A. Lomov, “Orthoregressive estimates for parameters of systems of linear difference equations” [in Russian], Sib. Zh. Ind. Mat. 8, No. 3, 102–119 (2005); English transl.: J. Appl. Industr. Math. 1, No. 1. 59–76 (2007).CrossRefGoogle Scholar
  9. 9.
    M. R. Osborne, “A class of nonlinear regression problems,” Data Represent., Proc. Semin. Aust. nat. Univ. 94–101. (1970).Google Scholar
  10. 10.
    A. O. Egorshin, “Numerical closed methods of identification of linear objects” [in Russian], In: Optimal and Self-Adjusting Systems, pp. 40–53, Novosibirsk (1971).Google Scholar
  11. 11.
    B. Roorda, “Algorithms for global total least squares modelling of finite multivariable time series,” Automatica 31, No. 3, 391–404 (1995).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. O. Egorshin, “Optimization of parameters of stationary models in a unitary space” [in Russian], Avtom. Telemekh. No. 12, 29–48 (2004); English transl.: Autom. Remote Control 65, No. 12, 1885–1903 (2004).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    V. G. Demidenko, “Recovery of parameters of a homogeneous linear model” [in Russian], Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 8, No. 3, 51–59 (2008).MathSciNetMATHGoogle Scholar
  14. 14.
    M. Aoki and P. C. Yue, “On the certain convergence questions in system identification,” SIAM J. Control. 8, No. 2. 239–256 (1970).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    B. G. Vorchik, “Identifiability of linear parametric stochastic systems. I. II” [in Russian], Avtom. Telemekh., No. 5, 64–78; No. 7, 96–109 (1985); English transl.: Autom. Remote Control 46, 596–609; 867–878 (1985).MATHGoogle Scholar
  16. 16.
    A. A. Lomov, “Identification of linear dynamic systems by short parts of transients with additive measUring disturbances” [in Russian], Izv. Akad. Nauk, Teor. Sist. Upr. No. 3, 20–26 (1997); English transl.: J. Comput. Syst. Sci. Int. 36, No. 3, 346–352 (1997).MATHGoogle Scholar
  17. 17.
    A. A. Lomov, “Distinguishability conditions for stationary linear systems” [in Russian], Differ. Uravn. 39, No. 2, 261–266 (2003); English transl.: Differ Equ. 39, No. 2, 283–288 (2003).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    A. A. Lomov, “On identifiability of stationary linear systems with coefficients that depend on a parameter” [in Russian], Sib. Zh. Ind. Mat. 6, No. 4 (16), 60–66 (2003).MathSciNetMATHGoogle Scholar
  19. 19.
    C. Lanczos, Practical Methods of Applied Analysis [Russian translation], Fiz. Mat. Lit., Moscow (1961).Google Scholar
  20. 20.
    V. I. Kostin, “On extremum points of one function” [in Russian], Upr. Syst. 24, 35–42 (1984).MathSciNetGoogle Scholar
  21. 21.
    G. K. Smyth, “Employing symmetry constraints for improved frequency estimation by eigenanalysis methods” Technometrics 42, 277–289 (2000).CrossRefGoogle Scholar
  22. 22.
    A. A. Lomov, “Minimal descriptions of stationary linear models” [In Russian], Models. Method. Optimiz. 28 91–117 (1994).MathSciNetGoogle Scholar
  23. 23.
    L. Schwartz, Analysis. I, II [Russian translation], Mir, Moscow (1972).Google Scholar
  24. 24.
    P. Lancaster, Theory of Matrices, Academic Press. New York etc. (1969).MATHGoogle Scholar
  25. 25.
    L. Mirsky, “Symmetric gauge functions and unitarily invariant norms,” Quart. J. Math. Oxf. II. Ser. 11, 50–59 (1960).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations