Journal of Mathematical Sciences

, Volume 188, Issue 2, pp 113–127 | Cite as

On the nonclassical approximation method for periodic functions by trigonometric polynomials

  • Yurii S. Kolomoitsev
  • Roald M. Trigub


We study the approximation of functions by linear polynomial means of their Fourier series with a function-multiplier φ that is equal to 1 not only at zero, in contrast with classical methods of summability. The exact order of convergence to zero of the sequence
$$ \mathop{\max}\limits_{{x\in \left[ {-\pi, \pi } \right]}}\left| {f(x)-\sum\limits_{{\left| k \right|\leq n}} {\varphi \left( {\frac{{k\pi }}{n}} \right){{\hat{f}}_k}{e^{ikx }}} } \right| $$
(\( {{\hat{f}}_k} \) Fourier coefficients) as n→∞ is obtained. The answer is given in terms of the values of difference operators of a continuous function f and a special K-functional (step of \( \frac{\pi }{n} \)). In addition, we obtain not only the sufficient conditions for φ but the necessary ones as well.


Fourier series Fourier transformation of a measure multiplier principle of comparison of multipliers moduli of smoothness K-functional Wiener’s \( \frac{1}{f} \) theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Berg and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976.CrossRefGoogle Scholar
  2. 2.
    B. R. Draganov, “Exact estimates of the rate of approximation of convolution operators,” J. Approx. Theory, 162, 952–979 (2010).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    R. Edwards, Fourier Series: A Modern Introduction, Springer, New York, 1979.MATHCrossRefGoogle Scholar
  4. 4.
    V. Hristov and K. Ivanov, “Realization of K-functionals on subsets and constrained approximation,” Math. Balkan. (New Ser.), 4, 236–257 (1990).MathSciNetMATHGoogle Scholar
  5. 5.
    E. Liflyand, S. Samko, and R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: an overview,” Anal. Math. Phys., 2, No. 1, 1–68 (2012).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971.MATHGoogle Scholar
  7. 7.
    R. M. Trigub, “Linear summation methods and the absolute convergence of Fourier series,” Izv. AN SSSR. Ser. Mat., 32, No. 1, 24—49 (1968).MathSciNetGoogle Scholar
  8. 8.
    R. M. Trigub, “The absolute convergence of Fourier integrals, summability of Fourier series and the approximation of functions by polynomials on a torus,” Izv. AN SSSR. Ser. Mat., 44, No. 6, 1378–1409 (1980).MathSciNetMATHGoogle Scholar
  9. 9.
    R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer, Dordrecht, 2004.MATHCrossRefGoogle Scholar
  10. 10.
    A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Institute of Applied Mathematics and Mechanics of the NAS of UkraineDonetskUkraine
  2. 2.Donetsk National UniversityDonetskUkraine

Personalised recommendations