Advertisement

Journal of Mathematical Sciences

, Volume 186, Issue 3, pp 466–477 | Cite as

Existence of optimal control for regularized problem with phase constraint

  • K. S. Musabekov
Article

We establish the existence of a solution to a system of differential equations governing a chemical reactor. We regularize the target functional and prove the existence of an optimal control for the regularized problem. Bibliography: 18 titles.

Keywords

Banach Space Optimal Control Problem Chemical Reactor Successive Approximation Operator Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Pontryagin, V. G. Boltyanskij, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1961); English transl.: Pergamon Press, Oxford etc. (1964).MATHGoogle Scholar
  2. 2.
    V. I. Plotnikov, “Necessary and sufficient optimality conditions and uniqueness conditions for optimizing functions for control systems of general type” [in Russian], Izv. AN SSSR. Ser. Mat. 36, No. 6, 652–679 (1972); English transl.: Math. USSR, Izv. 6, 649–676 (1973).MATHCrossRefGoogle Scholar
  3. 3.
    J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin etc. (1971).MATHCrossRefGoogle Scholar
  4. 4.
    A. I. Egorov, Optimal Control of Thermal and Diffusion Processes [in Russian], Nauka, Moscow (1978).Google Scholar
  5. 5.
    F. P. Vasil’ev, Methods for Solving Extremal Problems [in Russian], Nauka, Moscow (1981).Google Scholar
  6. 6.
    A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications [in Russian], “Nauchnaya Kniga” (IDMI), Novosibirsk (1999); English transl.: Am. Math. Soc., Providence, RI (2000).Google Scholar
  7. 7.
    R. Bellman, Dynamic Programming, Princeton Univ. Press, Princeton, NJ (1957).MATHGoogle Scholar
  8. 8.
    I. A. Krylov and F. L. Chernous’ko, “On a method of successive approximations for the solution of problems of optimal control” [in Russian], Zh. Vychisl. Mat. Mat. Fiz. 2, 1132–1139 (1962); English transl.: USSR Comput. Math. Math. Phys. 2, 1371–1382 (1962).MATHCrossRefGoogle Scholar
  9. 9.
    A. A. Lyubushin and F. L. Chernous’ko, “The method of successive approximations for calculation of optimal control” [in Russian], Izv. Akad. Nauk SSSR, Tekh. Kibern. No. 2, 147–159 (1983).Google Scholar
  10. 10.
    A. T. Luk’yanov and S. Ya. Serovaiskii, “The method of successive approximations in a problem of the optimal control of one nonlinear parabolic system” [in Russian], Zh. Vychisl. Mat. Mat. Fiz. 24, No. 11, 1638–1648 (1984); English transl.: USSR Comput. Math. Math. Phys. 24, No. 6, 23–30 (1984).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    K. S. Musabekov, “On a method for solving the optimal control problem of a chemical reactor process” [in Russian], Upr. Sist. 28, 21–33 (1988).MathSciNetMATHGoogle Scholar
  12. 12.
    C. Georgakis, R. Aris, and N. R. Amundson, “Studies in the control of tubular reactors,” Chem. Eng. Sci. 32, No. 11, 1359–1387 (1977).CrossRefGoogle Scholar
  13. 13.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967); English transl.: Am. Math. Soc., Providence, RI (1968).Google Scholar
  14. 14.
    V. S. Belonosov and T. I. Zelenyak, Nonlocal Problems in the Theory of Quasilinear Parabolic Equations [in Russian], Novosibirsk (1975).Google Scholar
  15. 15.
    K. S. Musabekov, “Existence theorems for the solution in a problem of optimal control of a chemical reactor” [in Russian], Upr. Sist. 22, 30–50 (1982).MathSciNetMATHGoogle Scholar
  16. 16.
    J. Leray and J. Schauder, “Topology and functional equations,” Usp. Mat. Nauk [in Russian] 1, No. 3-4, 71–95 (1946).MATHGoogle Scholar
  17. 17.
    O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations [in Russian], Nauka, Moscow (1973); English transl.: Academic Press, New York etc. (1968).MATHGoogle Scholar
  18. 18.
    F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover Publ., New York (1990).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations