Journal of Mathematical Sciences

, Volume 184, Issue 6, pp 716–745 | Cite as

Exchanged toric developments and bounded remainder sets

  • V. G. Zhuravlev

Using exchanged toric developments, we construct tilings of toric by bounded remainder sets. To this end, two special methods for stretching the unit cubes and a general method for multiplying toric developments are used. A multidimensional analog of Hecke’s theorem on the distribution of fractional parts is proved. Bibliography: 7 titles.


Special Method Fractional Part Unit Cube Multidimensional Analog Toric Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Zhuravlev, “Multidimensional Hecke theorem on the distribution of fractional parts,” Algebra Analiz, 24, No. 1, 95–130 (2012).MathSciNetGoogle Scholar
  2. 2.
    E. S. Fedorov, Elements of the Theory of Figures [in Russian], Moscow (1953).Google Scholar
  3. 3.
    G. V. Voronoi, Collected Works, Vol. 2 [in Russian], Kiev (1952).Google Scholar
  4. 4.
    V. P. Grishukhin, “Free and nonfree Voronoi polyhedra,” Mat. Zametki, 80, 367–378 (2006).MathSciNetGoogle Scholar
  5. 5.
    E. Hecke, “Über analytische Funktionen und die Verteilung von Zahlen mod. Einz,” Abh. math. sem. Hamburg. Univ., 1, 54–76 (1921).CrossRefGoogle Scholar
  6. 6.
    R. Szüsz, “Über die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul des Einheitsquadrats,” Acta Math. Acad. Sci. Hungar., 5, 35–39 (1954).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    H. Weyl,” Über die Gleichverteilung von Zahlen mod. Eins,” Math. Ann., 77, 313–352 (1916).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Vladimir State Humanitary UniversityVladimirRussia

Personalised recommendations