Journal of Mathematical Sciences

, Volume 183, Issue 6, pp 843–854 | Cite as

Fuzzy subgroups of n-ary subgroups

  • D. R. Prince Williams


We introduce a notion of t-fuzzy n-ary subgroup in an n-ary group (G, f) and have studied their related properties.


Fuzzy subgroup fuzzy n-ary subgroup t-fuzzy n-ary subgroup t-fuzzy n-ary relation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. T. Abu Osman, “On some product of fuzzy subgroups,” Fuzzy Sets and Systems, 24, 79–86 (1987).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    B. Davvaz and W. A. Dudek, “Fuzzy n-ary groups as a generalization of Rosenfeld’s fuzzy groups,” J. of Multi-Valued Logic and Soft Comp., 15, 451–469 (2009).MathSciNetMATHGoogle Scholar
  3. 3.
    W. Dörnte, “Untersuchungen über einen verallgemeinerten Gruppenbegriff,” Math. Z., 29, 1–19 (1928).MATHCrossRefGoogle Scholar
  4. 4.
    W. A. Dudek, “Remarks on n-groups,” Demonstr. Math., 13, 165–181 (1980).MathSciNetMATHGoogle Scholar
  5. 5.
    W. A. Dudek, “Autodistributive n-groups,” Comment. Math. Ann. Soc. Math. Polon. Prace Mat., 23, 1–11 (1983).MathSciNetMATHGoogle Scholar
  6. 6.
    W. A. Dudek, “On (i, j)-associative n-groupoids with the non-empty center,” Ricer. Mat. (Napoli), 35, 105–111 (1986).MathSciNetMATHGoogle Scholar
  7. 7.
    W. A. Dudek, “Medial n-groups and skew elements,” in Universal and Applied Algebra, World Scientific, Singapore, 1989, pp. 55–80.Google Scholar
  8. 8.
    W. A. Dudek, “On n-ary group with only one skew element,” Rad. Mat. Sarajevo, 6, 171-175 (1990).MathSciNetMATHGoogle Scholar
  9. 9.
    W. A. Dudek, “Varieties of polyadic groups,” Filomat., 9, 657–674 (1995).MathSciNetMATHGoogle Scholar
  10. 10.
    W. A. Dudek, “Fuzzification of n-ary groupoids,” Quasigr. Relat. Syst., 7, 45–66 (2000).MathSciNetMATHGoogle Scholar
  11. 11.
    W. A. Dudek, “Idempotents in n-ary semigroups,” Southeast Asian Bull. Math., 25, 97–104 (2001).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    W. A. Dudek, “On some old and new problems in n-ary groups,” Quasigr. Relat. Syst., 8, 15–36 (2001).MathSciNetMATHGoogle Scholar
  13. 13.
    W. A. Dudek, “Intuitionistic fuzzy approach to n-ary systems,” Quasigr. Relat. Syst., 15, 213–228 (2005).MathSciNetGoogle Scholar
  14. 14.
    W. A. Dudek, “Remarks to Głazek’s results on n-ary groups,” Disc. Math. Gen. Alg. Appl., 27, 199–233 (2007).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    W. A. Dudek and K. Głazek, “Around the Hosszlu–Gluskin Theorem for n-ary groups,” Discr. Math., 308, 4861–4876 (2008).MATHCrossRefGoogle Scholar
  16. 16.
    W. A. Dudek and J. Michalski, “On a generalization of Hosszú theorem,” Demonstr. Math., 15, 783–805 (1982).MathSciNetMATHGoogle Scholar
  17. 17.
    W. A. Dudek, K. Glazek, and B. Gleichgewicht, “A note on the axioms of n-groups,” in Colloquia Math. Soc. J. Bolyai, North-Holland, Amsterdam, 1982, pp. 195—202.Google Scholar
  18. 18.
    W. A. Dudek and I. Grozdzinska, “On ideals in regular n-semigroups,” Mat. Bilten Skopje, 3/4 (29/30), 35–44 (1979-1980).Google Scholar
  19. 19.
    W. A. Dudek and J. Michalski, “On a generalization of Hossz theorem,” Demonstr. Math., 15, 783–805 (1982).MathSciNetMATHGoogle Scholar
  20. 20.
    W. A. Dudek and J. Michalski, “On retracts of polyadic groups,” Demonstr. Math., 17, 281–301 (1984).MathSciNetMATHGoogle Scholar
  21. 21.
    W. A. Dudek and J. Michalski, “On a generalization of a theorem of Timm,” Demonstr. Math., 18, 869–883 (1985).MathSciNetMATHGoogle Scholar
  22. 22.
    W. A. Dudek and Z. Stojakovic, “On Rusakov’s n-ary rs-groups,” Czechosl. Math. J., 51 (126), 275–283 (2001).MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    J. W. Grzymala-Busse, “Automorphisms of polyadic automata,” J. Assoc. Comput. Mach., 16, 208–219 (1969).MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    R. Karner, Ternary Algebraic Structures and Their Applications in Physics, Univ. P. and M. Curie, Paris, 2000.Google Scholar
  25. 25.
    R. Kasner, “An extension of the group concepts,” Bull. Amer. Math. Soc., 10, 290–291 (1904).Google Scholar
  26. 26.
    M. Kondo and W. A. Dudek, “On the transfer principle in fuzzy theory,” Mathware and Soft Comp., 12, 41–55 (2005).MathSciNetMATHGoogle Scholar
  27. 27.
    D. Nikshych and L. Vainerman, Finite Quantum Groupoids and Their Applications, Univ. California, Los Angeles, 2000.Google Scholar
  28. 28.
    A. Rosenfeld, “Fuzzy groups,” J. Math. Anal. Appl., 35, 512–517 (1971).MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    A. Zadeh, “Fuzzy sets,” Inform. Control, 8, 338–353 (1965).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Department of Information TechnologyCollege of Applied Sciences, Ministry of Higher EducationSohar-311Sultanate of Oman

Personalised recommendations