Journal of Mathematical Sciences

, Volume 182, Issue 5, pp 714–723 | Cite as

New correction theorems in the light of a weighted Littlewood-Paley-Rubio de Francia inequality

  • D. M. Stolyarov

We prove the following corrections theorem: Any function f on the circle \( {\mathbb T} \) that is bounded by an α 1-weight w (which means that \( M{w^2} \leqslant C{w^2} \)) can be modified on a set with \( \mathop \smallint \limits_e w \leqslant \varepsilon \) so that its quadratic function built up from an arbitrary sequence of nonintersecting intervals in ℤ will not exceed \( C\log \frac{1}{\varepsilon }w \). Bibliography: 11 titles.


Quadratic Function Arbitrary Sequence Correction Theorem Nonintersecting Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Stein, Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press (1993).Google Scholar
  2. 2.
    S. V. Kisliakov, “Littlewood-Paley theorem for arbitrary intervals: the weights estimates,” Zap. Nauchn. Semin. POMI, 355, 180–192 (2008).Google Scholar
  3. 3.
    J. L. Rubio de Francia, “A Littlewood-Paley inequality for the arbitrary intervals,” Rev. Math. Iberoamer., 1, 1–13 (1985).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    D. S. Anisimov and S. V. Kisliakov, “Double singular integrals: interpolation and correction,” Algebra Analiz, 16, 1–33 (2004).Google Scholar
  5. 5.
    S. V. Kisliakov, “A sharp correction theorem,” Studia Math., 113, 177–196 (1995).MathSciNetMATHGoogle Scholar
  6. 6.
    S. V. Kisliakov and D. V. Parilov, “On the Littlewood-Paley theorem for arbitrary intervals.” Zap. Nauchn. Semin. POMI, 327, 78–114 (2005).Google Scholar
  7. 7.
    S. V. Kisliakov, “Interpolation of H p-spaces: some recent developments,” in: Israel Mathematical Conference Proceedings, 13 (1999), pp. 102–140.Google Scholar
  8. 8.
    I Berg and I Lofstrem, Interpolation Spaces. Introduction [Russian translation], Moscow (1980).Google Scholar
  9. 9.
    K. Iosida, Functional Analysis [Russian translation], Moscow (2010)Google Scholar
  10. 10.
    S. V. Kisliakov, “Quantitative aspect of the correction theorems,” Zap. Nauchn. Semin. POMI, 92, 182–191. (1979).Google Scholar
  11. 11.
    D. E. Men’shov, “On the uniform convergence of the Fourier sums,” Math. Comp., 2, 67–96 (1942).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations